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Why we do 
cosmology?

Why we are not satisfied by Einstein 
GR? 



Modern physics problems and questions 
addressed by cosmologists

We have several questions to 
be answered: DE, DM, 
Inflation, Hierarchy, 
Quantum gravity (black holes) 
and a dream of  unification 

Can we touch all these 
questions?-is a bigger dream. 

We also have excellent 
working theory for many 
cases so the physicists are 
reasonably sceptic.



Galaxy Rotational curve
Dark Matter or …



Data and theory



Hubble Diagram
Datas are being fitted by a given model
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Suggested theories

Modified Theories of  Gravity 

Dark Energy model 

Extra dimensional theories



GR and  Lambda
data and logics wants more



General approaches

Horndensky 

Series 

Naive



Equations of  motion

Friedmann equations 

Lets write them in terms of  z 

Project: slope of the DE potential
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Constraints on Dark energy potential.

I. POTENTIAL SLOPE

Here we show that there always exist a single field potential V (�) that reproduces any observed Hubble parameter
as a function of redshift, H(z). We assume the Universe contains matter with a known generic equation of state wm

and a single canonical minimally coupled scalar field. The two independent Einstein equations are (we put 8⇡G = 1)

3H2 = ⇢m +
�̇2

2
+ V (�) (1)

2Ḣ = ��̇2 � ⇢m(1 + wm) (2)

Adopting the redshift z as time coordinate, we can write from (2)

H(z)2(1 + z)2
✓
d�

dz

◆2

= 2(1 + z)H(z)
dH

dz
� ⇢m(z)(1 + wm(z)) (3)

where ⇢m(z) is the solution of

(1 + z)
d⇢m
dz

= 3⇢m(z)(1 + wm(z)) (4)

From this equation one can obtain �(z). Then by combining (3) and (1) one obtains

V = 3H(z)2 � (1 + z)H(z)
dH(z)

dz
+

⇢m(z)

2
(wm(z)� 1) (5)

which gives V (z). Finally, by inverting �(z), it is possible to reconstruct V (�) for any observed H(z). There is no
guarantee however that the formal solution so obtained is stable or unique or free of singularities.

II. THE PROJECT

The project is to find constraints on the potential at various redshifts (i.e without parameters or, alternatively, with
some simple parametrization as eg inflationary slow roll parameters) from present and future supernovae and BAO
data. First thing would be to check if there is anything like this in literature.

III. QUESTIONS

What is our main point? The same is done for supernova data will our work be for combined data or we are seeking
for something more than this? I mean will we just increase accurancy or some other prinicpal thing which is important
and which is the priority. The question is about application of results of such an analysis.

Isn’t a sound horizon model dependent? How can we find H’(z)?-by paarametrization or using SN data?
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Ia type SuperNova as a standard  candle 
The farer it is the fainter it gets



How we will use data from Ia Type SN

Distance modulus 

Error propagation 

Hubble 

error propagation 
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I. THE METHOD

As we mentioned in the Introduction, we are going to restore the scalar field potential in the

most general form, so no assumptions and priors are made about its functional form. Then the

procedure of the recovering is as follows: as an input data we have distance modulus µi with its

error δµi for each ith supernova at redshift zi (maybe with error δzi, depending on the data). To

smooth the individual values of the distance modulus we are binning supernovae. We use two main

binning methods – binning with equal ∆z and with equal ∆N (number of supernovae), as well as

their combination, if necessary. Both these methods have their pros and contras and in due section

we shall discuss it; by now let us continue with the reconstruction procedure.

Assuming Gaussian nature of the SNe errors, in each bin we determine mean value for the

distance modulus as an average over the individual values µj = (
∑

i µi)/Nj and the error as

σµj
=
√

(
∑

i σ
2
i )/Nj , where Nj is the number of supernovae in jth bin. We also define δz – the

error in z as the half-width of the bin (in case we have δzi for each individual supernova the

definition for the error in binned z becomes more complicated). For equal z binning it gives the

same value for δz but for alternative binning it will be different so we keep this notation for general

case.

The process of binned data is as follows: first we transform distance modulus and its errors into

comoving distance DM :

DM =
10

„µ

5
+ 1

«

1 + z
, δDM = δ

⎛

⎜

⎜

⎝

10

„µ

5
+ 1

«

1 + z

⎞

⎟

⎟

⎠

= · · · = DM

(

ln 10δµ

5
+

δz

(1 + z)

)

. (1)

We process further to H(z), which is defined as H(z) = (dDM/dz)−1. In practice for simplicity

and to avoid loosing too much data points we use one-step differentiation scheme, then the value

and the error take a form

H(z) =
1

D′

M

, δH(z) = δ

(

1

D′

M

)

=
δD′

M

(D′

M )2
, D′

M =
DM,2 − DM,1

z2 − z1

,

δ(D′

M ) = δ

(

DM,2 − DM,1

z2 − z1

)

= · · · =
δDM,2 + δDM,1

z2 − z1

+ |D′

M |
δz2 + δz1

z2 − z1

.

(2)

For equal z binning all δz are equal to each other, but in the general case it is not true, so we keep
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Reconstruction of  the field
Then we need to calculate 

Note that the reconstruction will be done up to unknown 
constant 

2

general for of the errors expression. Similarly to the described above procedure, we calculate the

derivative of H(z) with respect to z:

H ′ =
H2 − H1

z2 − z1

, δH ′ = · · · =
δH2 + δH1

z2 − z1

+ |H ′|
δz2 + δz1

z2 − z1

. (3)

Now with both H(z) (see Eq. (2)) and H ′ (see Eq. (3)) calculated, we can recover the potential

V (z) and the kinetic part (dφ/dz)2. The equations for them and their errors are the following:

Ṽ ≡
8πG

3H2
0

V (z) =
H(z)2

H2
0

−
H(z)H ′(z)(1 + z)

3H2
0

−
Ω0

m(1 + z)3

2
,

δṼ =
2HδH

H2
0

+
(1 + z)H ′δH + H(1 + z)δH ′ + HH ′δz

3H2
0

+
3(1 + z)2Ω0

mδz

2
;

(4)

˜(

dφ

dz

)2

≡
8πG

3H2
0

(

dφ

dz

)2

=
2H ′(z)

3H(z)H2
0 (1 + z)

−
Ω0

m(1 + z)

H2
,

δ

( ˜(

dφ

dz

)2
)

=
2

3H2
0

[

δH ′

H(1 + z)
+

H ′δH

H2(1 + z)
+

H ′δz

H(1 + z)2

]

+ Ω0
m

(

δz

H2
+

2(1 + z)δH

H3

)

.

(5)

The equations (4)–(5) give us V (z) and (dφ/dz)2; the latter of them (if positive!) could be

integrated to get φ(z) (with an additive constant!) and finally V (z) and φ(z) could be used

to reconstruct V (φ) (again, with additive constant kept in mind). For simplicity we are using

rectangle method for integration, so the error propagation for the remaining steps is as follows:

dφ

dz
=

√

(
dφ

dz
)2 ⇒ δ

(

dφ

dz

)

= δ

(

(

dφ

dz

)2
)

/

(

2
dφ

dz

)

;

φ =
∫

(

dφ

dz

)

dz ∼=

(

dφ

dz

)

|zcentral
∆z ⇒ δφ = ∆z × δ

(

dφ

dz

)

.

(6)

In the sections to follow we try the described scheme first on the synthetic and then on the real

data.

II. ΛCDM SYNTHETIC DATA

In this section we test our scheme with synthetic ΛCDM data. We generate binned data for

ΛCDM cosmology with H0 = 68km/s/Mpc and Ωm = 0.25 with bin size δz = 0.025 and δµ = 0.5,



Error propagation

Potential 

error 

kinetic energy 

error 
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δṼ =
2HδH

H2
0

+
(1 + z)H ′δH + H(1 + z)δH ′ + HH ′δz

3H2
0

+
3(1 + z)2Ω0

mδz

2
;

(4)

˜(

dφ

dz

)2

≡
8πG

3H2
0

(

dφ

dz

)2

=
2H ′(z)

3H(z)H2
0 (1 + z)

−
Ω0

m(1 + z)

H2
,

δ

( ˜(

dφ

dz

)2
)

=
2

3H2
0

[

δH ′

H(1 + z)
+

H ′δH

H2(1 + z)
+

H ′δz

H(1 + z)2

]

+ Ω0
m

(

δz

H2
+

2(1 + z)δH

H3

)

.

(5)

The equations (4)–(5) give us V (z) and (dφ/dz)2; the latter of them (if positive!) could be

integrated to get φ(z) (with an additive constant!) and finally V (z) and φ(z) could be used

to reconstruct V (φ) (again, with additive constant kept in mind). For simplicity we are using

rectangle method for integration, so the error propagation for the remaining steps is as follows:

dφ

dz
=

√

(
dφ

dz
)2 ⇒ δ

(

dφ

dz

)

= δ

(

(

dφ

dz

)2
)

/

(

2
dφ

dz

)

;

φ =
∫

(

dφ

dz

)

dz ∼=

(

dφ

dz

)

|zcentral
∆z ⇒ δφ = ∆z × δ

(

dφ

dz

)

.

(6)

In the sections to follow we try the described scheme first on the synthetic and then on the real

data.

II. ΛCDM SYNTHETIC DATA

In this section we test our scheme with synthetic ΛCDM data. We generate binned data for

ΛCDM cosmology with H0 = 68km/s/Mpc and Ωm = 0.25 with bin size δz = 0.025 and δµ = 0.5,

2

general for of the errors expression. Similarly to the described above procedure, we calculate the

derivative of H(z) with respect to z:

H ′ =
H2 − H1

z2 − z1

, δH ′ = · · · =
δH2 + δH1

z2 − z1

+ |H ′|
δz2 + δz1

z2 − z1

. (3)

Now with both H(z) (see Eq. (2)) and H ′ (see Eq. (3)) calculated, we can recover the potential

V (z) and the kinetic part (dφ/dz)2. The equations for them and their errors are the following:
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δṼ =
2HδH

H2
0

+
(1 + z)H ′δH + H(1 + z)δH ′ + HH ′δz

3H2
0

+
3(1 + z)2Ω0

mδz

2
;

(4)

˜(

dφ

dz

)2

≡
8πG

3H2
0

(

dφ

dz

)2

=
2H ′(z)

3H(z)H2
0 (1 + z)

−
Ω0

m(1 + z)

H2
,

δ

( ˜(

dφ

dz

)2
)

=
2

3H2
0

[

δH ′

H(1 + z)
+

H ′δH

H2(1 + z)
+

H ′δz

H(1 + z)2

]

+ Ω0
m

(

δz

H2
+

2(1 + z)δH

H3

)

.

(5)

The equations (4)–(5) give us V (z) and (dφ/dz)2; the latter of them (if positive!) could be

integrated to get φ(z) (with an additive constant!) and finally V (z) and φ(z) could be used

to reconstruct V (φ) (again, with additive constant kept in mind). For simplicity we are using

rectangle method for integration, so the error propagation for the remaining steps is as follows:

dφ

dz
=

√

(
dφ

dz
)2 ⇒ δ

(

dφ

dz

)

= δ

(

(

dφ

dz

)2
)

/

(

2
dφ

dz

)

;

φ =
∫

(

dφ

dz

)

dz ∼=

(

dφ

dz

)

|zcentral
∆z ⇒ δφ = ∆z × δ

(

dφ

dz

)

.

(6)

In the sections to follow we try the described scheme first on the synthetic and then on the real

data.

II. ΛCDM SYNTHETIC DATA

In this section we test our scheme with synthetic ΛCDM data. We generate binned data for

ΛCDM cosmology with H0 = 68km/s/Mpc and Ωm = 0.25 with bin size δz = 0.025 and δµ = 0.5,



Mock data: LCDM
H_0=68, Om_m=0.25



Mock Data: exponential potential
wigglings are numerical effects, kinetic term is positive which is a good news



                       Real SN data 
Union2.1(580 SNe Ia 

up to z=1.414) 
JLA (740 SNe Ia 

up to z=1.3) 
    1:Union2.1, equal-z:10 green,15 cyan,20 dark green 

2:Union2.1, equal-N:5 green,10 dark green     

3:JLA, equal-N:5 cyan, 10 dark green 

          

We see reconstructed real  
data (Union2.1 (580 SN Ia  

up to z=1.414) and JLA (740 SN 
Ia up to z=1.3)) 

Equal-z binnin and equal SN number  
binning 



                  1:Equal-z with 10 bins.  Union2.1-green, JLA-cyan ……………          

2:(e) Effect of  H_0, black-60, red-64, green-68, blue-7 

3:(f) Effect of  Om ……………………………………..

For the real data we see that  
the method will not work and 

we have complete mess



Stability

So if  we are mistaken with  
the choice of  Om and H_0 

We will get wrong  
reconstructed potential 

(fake potential)



Conclusion

For good data the method may work 

For the real data it is a complete mess 

reconstruction result highly depends on the 
accuracy of  H_0 and Om_m



Thank you for your attention

Շնորհակալություն 

Merci :)


