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standard  
model 

mH≈125 GeV
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50 years between prediction and discovery 

Nobel prize 2013 for François Englert and Peter Higgs
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Many people have contributed 

Kibble, Guralnik, Hagen, Englert, and Brout Anderson	
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So	the	standard	model	works	(maybe	too	well),	what	do	we	next?	
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We	know	that	the	standard	model	is	not	complete.	

Dark	maRer	is	not	explained	by	the		
standard	model	

Galaxy	rotaSon	curves	are	an	indicaSon	that	
some	maRer	is	dark	

SSll	given	the	lack	of	new	physics	at	the	LHC	we	must	try	to	understand		
as	much	as	possible	with	the	SM.	Also	new	physics	may	not	couple		
to	the	SM	directly	maybe	only	gravitaSonally.	 6	



GravitaSonal	extension	of	the	SM	
•  From what we know at this point, all physics beyond the SM could be 

of gravitational origin:
–  Dark energy could be a not-so-lousy constant
–  Dark matter could be primordial black holes, or some new form of 

gravitational degrees of freedom not connected to weak scale physics.
•  A key problem is that the electroweak potential could be unstable, 

depending on the top quark mass.
•  New physics required by astrophysical/cosmological observations 

may not affect the Higgs potential.
•  If our universe started with a large Higgs field value, how come we 

ended up in the false electroweak vacuum?
•  This is generic problem for inflationary cosmology coupled to the 

standard model.
•  Recent progress in effective field theory applied to quantum gravity 

enables one to build models of inflation coupled to the SM taking into 
account quantum gravity effects.
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EffecSve	Quantum	Gravity	

•  We have an EFT valid up to a scale 

•  The leading order terms are 
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renormalization scale needs to be adjusted to match the number of particles included in the

model. Indeed, to a good approximation the real part of the complex pole is of the order of

|Re q2| ⇠
r

120⇡

NGN
(5)

which corresponds to the energy scale M? at which the e↵ective theory breaks down. Indeed,

the complex pole will lead to acausal e↵ects and it is thus a signal of strong quantum

gravitational e↵ects which cannot be described within the realm of the e↵ective theory. We

should thus pick our renormalization scale µ of the order of M? ⇠ |Re q2|. We have
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and we thus find the mass of the complex pole:

m2 = (0.53� 0.67 i)

r
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. (7)

As emphasized before, the mass of this object depends on the number of fields in the theory.

The corresponding wave has a frequency:
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The imaginary part of the complex pole will lead to a damping of the component of the grav-

itational wave corresponding to that mode. The complex poles are gravitationally coupled to

matter, we must thus assume that the massive modes are produced at the same rate as the

usual massless graviton mode if this is allowed kinematically. During an astrophysical event

leading to gravitational waves, some of the energy will be emitted into these massive modes

which will decay rather quickly because of their large decay width. The possible damping

of the gravitational wave implies that care should be taken when relating the energy of the

gravitational wave observed on earth to that of the astrophysical event as some of this energy

could have been dissipated away as the wave travels towards earth.

The idea that gravitational waves could experience some damping has been considered

before [10], however it is well known that the graviton cannot split into many gravitons,
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The idea that inflation may be due to degrees of freedom already present in the stan-

dard model of particle physics or quantum general relativity is extremely attractive and has

received much attention in the recent years. In particular two models stand out by their

simplicity and elegance. Higgs inflation [1–3] with a large non-minimal coupling of the Higgs

boson H to the Ricci scalar (⇠H†HR) and Starobinsky’s inflation model [4] based on R2

gravity are both minimalistic and perfectly compatible with the latest Planck data.

These two models should not be considered as physics beyond the standard model but

rather both operators ⇠H†HR and R2 are expected to be generated when general relativity

is coupled to the standard model of particle physics. We will come back to that point

shortly. The aim of this paper is to point out an intriguing distinct possibility, namely that

Starobinsky inflation is generated by quantum e↵ects due to a large non-minimal coupling

of the Higgs boson to the Ricci scalar. In that framework, we do not need to posit that the

Higgs boson starts at a high field value in the early universe which would alleviate constraints

coming from the requirement of having a stable Higgs potential even for large Higgs field

values [5–7].

We shall now argue that both terms necessary for Higgs inflation or Starobinsky’s model

are naturally present when the standard model of particle physics is coupled to general rela-

tivity. While the quantization of general relativity remains one of the outstanding challenges

of theoretical physics, it is possible to use e↵ective field theory methods below the energy scale

M? at which quantum gravitational e↵ects are expected to become large. The energy scale

M? is usually assumed to be of the order of the Planck scale MP =
p
8⇡GN

�1
= 2.4335⇥1018

GeV, however recent work has shown that even in four space-time dimensions this energy

scale is model dependent. At energies below M?, we can describe all of particle physics and

cosmology with the following e↵ective field theory (see e.g. [8–10])

S =

Z
d4x

p
�g

✓✓
1

2
M2 + ⇠H†H

◆
R� ⇤4

C + c1R
2 + c2C

2 + c3E + c4⇤R + (1)

�LSM � LDM +O(M�2
? )

◆

where we have restricted our considerations to dimension four operators which are ex-

pected to dominate at least at low energies. Note that we are using the Weyl basis and

the following notations: R stands for the Ricci scalar, Rµ⌫ for the Ricci tensor, E =

Rµ⌫⇢�Rµ⌫⇢� � 4Rµ⌫Rµ⌫ + R2, C2 = E + 2Rµ⌫Rµ⌫ � 2/3R2, the dimensionless ⇠ is the non-

minimal coupling of the Higgs boson H to the Ricci scalar, the coe�cients ci are dimension-

less free parameters, the cosmological constant ⇤C is of order of 10�3 eV, the Higgs boson

vacuum expectation value, v = 246 GeV contributes to the value of the Planck scale

(M2 + ⇠v2) = M2
P , (2)
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NB the Wilson coefficients
of these operators must 
be measured in experiments.

+	non	local	terms	(see	next	slide)	



PredicSons	of	EQG	
•  The Wilson coefficients of these operators are universal 

predictions of quantum gravity:

9	
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α β γ ᾱ β̄ γ̄
Scalar 5(6ξ − 1)2 −2 2 5(6ξ − 1)2 3 −1
Fermion −5 8 7 0 18 −11
Vector −50 176 −26 0 36 −62

Graviton 430 −1444 424 90 126 298

TABLE I: Coefficients of different fields. All numbers should be divided by 11520π2.

The coefficient a2(x) is known for scalars, fermions and photons [5, 24]

aS2 (x) =
1

180

(
5

2
R2 −RµνR

µν +RµναβR
µναβ

)
(51)

aF2 (x) =
1

360

(
−5R2 + 8RµνR

µν + 7RµναβR
µναβ

)
(52)

aV2 (x) =
−1

180

(
20R2 − 86RµνR

µν + 11RµναβR
µναβ

)
. (53)

Here, the result for fermions assumes a four-component spinor field. The result for the massless vector field also
includes the ghost contribution, which is twice the scalar field result with an appropriate minus sign. Finally, the
classic paper by ’t Hooft and Veltman [25] gave the result for gravitons only after using the Gauss-Bonnet relation,
but the general result has since been calculated, see e.g. [26]. This enables us to read off the result for gravitons
which also includes the ghost contribution

aG2 (x) =
215

180
R2 −

361

90
RµνR

µν +
53

45
RµναβR

µναβ . (54)

In table (I), we collect the coefficients of different fields.
The results are shown for a scalar with a coupling ξRφ2 and the parameter ξ enters the α couplings

α = ᾱ =
(6ξ − 1)2

2304π2
(55)

with β, γ, β̄, γ̄ independent of ξ. Unless stated otherwise, our results are presented for a minimally coupled scalar
(ξ = 0), while a conformally coupled scalar has ξ = 1/6. For conformally invariant fields the coefficient ᾱ will
vanish. Because the FLRW metric is conformally flat, the coupling β̄ does not contribute to our analysis as mentioned
previously. This leaves only the coefficient γ̄ as the active parameter. For NS scalars, Nf fermions and NV gauge
bosons, this coupling has the value

γ̄ = −
1

11520π2
[NS + 11Nf + 62NV ] . (56)

Note that all conformally invariant matter fields carry the same sign of γ̄ and will have similar effects, differing just
in magnitude. Moreover, this case is independent of the parameter µ because the Gauss-Bonnet non-local term (the
one proportional to γ̄) has no local contribution to the equations of motion.
Finally, we can also add up the contributions of all the SM particles (plus the graviton) to find effective SM

coefficients which are calculated as follows

αSM = NSαS +NlαF +NcNqαF +NV αV + αG (57)

and likewise for β and γ. Here, we have broken the fermion contribution up into quark and lepton terms Nf =
Nl +NcNq where Nl is the number of leptons, Nq and Nc are the numbers of quarks and colors respectively. For the
standard model with a minimally coupled Higgs, these numbers read

NS = 4, Nl = 6, Nc = 3, Nq = 6, NV = 12 . (58)

Hence, for this case we find

αSM =
−7

1152π2
, βSM =

287

1440π2
, γSM =

−17

1440π2
(59)
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vanish. Because the FLRW metric is conformally flat, the coupling β̄ does not contribute to our analysis as mentioned
previously. This leaves only the coefficient γ̄ as the active parameter. For NS scalars, Nf fermions and NV gauge
bosons, this coupling has the value

γ̄ = −
1

11520π2
[NS + 11Nf + 62NV ] . (56)

Note that all conformally invariant matter fields carry the same sign of γ̄ and will have similar effects, differing just
in magnitude. Moreover, this case is independent of the parameter µ because the Gauss-Bonnet non-local term (the
one proportional to γ̄) has no local contribution to the equations of motion.
Finally, we can also add up the contributions of all the SM particles (plus the graviton) to find effective SM

coefficients which are calculated as follows

αSM = NSαS +NlαF +NcNqαF +NV αV + αG (57)

and likewise for β and γ. Here, we have broken the fermion contribution up into quark and lepton terms Nf =
Nl +NcNq where Nl is the number of leptons, Nq and Nc are the numbers of quarks and colors respectively. For the
standard model with a minimally coupled Higgs, these numbers read

NS = 4, Nl = 6, Nc = 3, Nq = 6, NV = 12 . (58)

Hence, for this case we find

αSM =
−7

1152π2
, βSM =

287

1440π2
, γSM =

−17

1440π2
(59)

7

we can write the action in explicitly non-local form

SNL =

∫
d4x

∫
d4y

√
g(x)

1/2
R(x)L(x, y;µ)

√
g(y)

1/2
R(y) . (44)

Again, we note that the logµ dependence in these equations corresponds to a local effect. Here, we see that replacing
the covariant d’Alembertian in Eqn. (44) by its Minkowski couterpart yields the first term in Eqn. (24).

There are three terms in the general non-local Lagrangian. Reverting temporarily to quasi-local form, these can be
written as

SQL =

∫
d4x

√
g

(

αR log

(
✷

µ2
α

)
R+ βRµν log

(
✷

µ2
β

)

Rµν + γRµναβ log

(
✷

µ2
γ

)
Rµναβ

)

(45)

where α,β, γ are numerical coefficients which we will display below. We allow for the possibility that the renormal-
ization scales are different for the three terms as the coupling constants of the local Lagrangian could be measured
at different scales. For local terms, there are only two quadratic invariants to be considered due to the Gauss-Bonnet
identity which holds strictly in four dimensions

∫
d4x

√
g RµναβR

µναβ =

∫
d4x

√
g [4RµνR

µν −R2] + total derivative . (46)

While Eqn. (45) is simple and easy to apply, an alternate form reveals some interesting physics. For this form we
employ the Weyl tensor in four dimensions

Cµναβ = Rµναβ −
1

2
(gµαRνβ + gµβRνα + gναRµβ − gνβRµα) +

1

6
R (gµαgνβ − gµβgνα) (47)

to rewrite

SQL =

∫
d4x

√
g
[
ᾱR log

(
✷

µ2
1

)
R+ β̄Cµναβ log

(
✷

µ2
2

)
Cµναβ + γ̄

(
Rµναβ log (✷)R

µναβ − 4Rµν log (✷)R
µν

+R log (✷)R
)]

. (48)

This form has several theoretical advantages. Here the last term, similar in structure to the Gauss-Bonnet term, does
not have any µ dependence because its local form does not contribute to the equations of motion. The FLRW metric
that we use below is conformally flat and thus its Weyl tensor vanishes. Thus the second term will not contribute
to our cosmological application. In turn this tells us that the cosmology study dependence on local short distance
physics comes through the first term only, and there is only one parameter µ1 ≡ µ which describes this local term.
In addition this first term is not generated by conformally invariant field theories (fermions, photons and conformally
coupled scalars) and their quantum effects will be purely non-local. The coefficients in these two different bases are
related by

α = ᾱ+
β̄

3
+ γ̄, β = −2β̄ − 4γ̄, γ = β̄ + γ̄ . (49)

We can identify the coefficients in the non-local Lagrangian because the logarithms are tied to the divergences
in the one-loop effective action, as shown by the perturbative calculation. The latter have been calculated in the
background field method, and results are known before the Gauss-Bonnet identity has been applied1. For example,
the divergent effective Lagrangian for a massless field reads

Ldiv =
√
|g|

a2(x)

16π2 ϵ
. (50)

1 This background field method resolves the problem of identifying the complete form of the non-linear completion that we had in
discussing Eq. (24).

(Donoghue	et	al,	Codello	et	al.)	



Universal features of quantum gravity	
Using EFT techniques, we have identified universal (model 
independent) features of quantum gravity:

–  The scale of quantum gravity is dynamical, 

it depends on the number of fields in the theory.

–  Strong interactions kick in at this energy scale.

–  Space-time becomes non-local at this energy scale.
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As emphasized before, the mass of this object depends on the number of fields in the theory.

The corresponding wave has a frequency:
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The imaginary part of the complex pole will lead to a damping of the component of the grav-

itational wave corresponding to that mode. The complex poles are gravitationally coupled to

matter, we must thus assume that the massive modes are produced at the same rate as the

usual massless graviton mode if this is allowed kinematically. During an astrophysical event

leading to gravitational waves, some of the energy will be emitted into these massive modes

which will decay rather quickly because of their large decay width. The possible damping

of the gravitational wave implies that care should be taken when relating the energy of the

gravitational wave observed on earth to that of the astrophysical event as some of this energy

could have been dissipated away as the wave travels towards earth.

The idea that gravitational waves could experience some damping has been considered

before [10], however it is well known that the graviton cannot split into many gravitons,

3



Summary of EQG and bounds on its parameters 
•  We can describe any theory of quantum gravity below the Planck 

scale using effective field theory techniques:

•  Planck scale
•  ΛC~10-12 GeV; cosmological constant.
•  M★> few TeVs from QBH searches at LHC and cosmic rays.
•  Dimensionless coupling constants ξ, c1, c2 

–  c1	and	c2	<1061	[xc, Hsu and Reeb (2008)] 
	 	R2 inflation requires c1=9.7 × 108 (Faulkner et al. astro-ph/0612569]).	

–  ξ < 2.6 × 1015 [xc & Atkins, 2013]

Higgs inflation requires ξ∼104.
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Higgs	in	cosmology	
•  In an expanding universe with Hubble scale H, the evolution of the Higgs 

boson h is given by
 

						where	V	(h)	is	the	potenSal	of	the	scalar	field.		
•  Even	if	one	imposes	as	an	iniSal	condiSon	at	the	start	of	our	universe	that	

the	Higgs	field	starts	at	the	origin,	it	will	most	likely	be	excited	to	higher	field	
values	during	inflaSon.	

•  	Indeed,	because	the	mass	of	the	Higgs	boson	is	very	small	compared	to	the	
scale	of	inflaSon,	it	is	essenSally	massless.		

•  Quantum	fluctuaSons	of	the	Higgs	field	will	drive	it	away	from	the	minimum	
of	the	potenSal.		

•  Its	quantum	fluctuaSons	are	of	order	the	Hubble	scale	H.	
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The non-minimal coupling ⇠�2R of scalars (�) to curvature R has attracted much atten-

tion in the recent years. Indeed, in four space-time dimensions, ⇠ is a dimensionless coupling

constant and as such is likely to be a fundamental constant of nature. With the discovery

of the Higgs boson, the only known fundamental scalar field so far observed, it became clear

that this parameter is relevant and should be considered when coupling the standard model

of particle physics to general relativity.

The value of the non-minimal coupling of the Higgs boson to curvature is a free parameter

of the standard model of particle physics. There has been no direct measurement so far of

this fundamental constant of nature. The discovery of the Higgs boson at the Large Hadron

Collider at CERN and the fact that the Higgs boson behaves as expected in the standard

model implies that the non-minimal coupling is smaller than 2.6 ⇥ 1015 [1]. This bound

comes from the fact that for a large non-minimal coupling the Higgs boson would decouple

of the standard model particles. We have little theoretical prejudice on the magnitude of

this constant. Conformal invariance would require ⇠ = 1/6, but this symmetry is certainly

not an exact symmetry of nature.

Assuming that the standard model is valid up to the Planck scale or some 1018 GeV, the

early universe cosmology of the Higgs boson represents an interesting challenge. Given the

mass of the Higgs boson which has been measured at 125 GeV and the current measurement

of the top quark mass, the electroweak vacuum is at best metastable [2]. The implication of

this metastability of the electroweak vacuum for the standard model coupled to an inflation

sector has recently been discussed [3]. Indeed, one finds that the Higgs quadratic coupling

which governs the shape of the Higgs potential for large field value turns negative at an

energy scale ⇤ ⇠ 1010 � 1014 GeV. The electroweak vacuum with the minimum at 246 GeV

is not the ground state of the standard model, but rather there is a lower minimum to the

left and our vacuum is only metastable. This is a problem in an inflationary universe.

In an expanding universe with Hubble scale H, the evolution of the Higgs boson h is

given by

ḧ+ 3Hḣ+
@V (h)

@h
= 0 (1)

where V (h) is the potential of the scalar field. Even if one imposes as an initial condition at

the start of our universe that the Higgs field starts at the origin, it will most likely be excited

to higher field values during inflation. Indeed, because the mass of the Higgs boson is very

small compared to the scale of inflation, it is essentially massless. Quantum fluctuations of

the Higgs field will drive it away from the minimum of the potential. Its quantum fluctuations

are of order the Hubble scale H. Thus, for H > ⇤, it is likely that the Higgs will overshoot

the barrier between the false vacuum in which our universe lives and the lower state true

1



Higgs	potenSal	instability	
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For	H	>	Λ,	it	is	likely	that		
the	Higgs	will	
	overshoot	the	barrier		
between	the		
false	vacuum	in	which	our		
universe	lives	and		
the	lower	state	true	vacuum	of		
the	theory.		
	



Non-minimal	coupling	of	scalars	to	
curvature	

•  In	inflaSonary	cosmology	one	ohen	deals	with	acSons	of	the	type		

•  which	lead	to		

•  It	is	ohen	argued	that	the	term	ξ	R	is	a	curvature	dependent	mass	
term	for	the	scalar		field	φ.	

•  	One	needs	to	be	more	careful!	

•  The	problem	is	that	the	non-minimal	coupling	induces	a	mixing	
between	the	kineSc	term	of	the	scalar	field	and	of	the	metric	field.		
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vacuum of the theory.

In [3, 4], it is shown that a direct coupling of the Higgs boson to the inflaton field can

significantly a↵ect this picture if this coupling makes the Higgs potential convex. This

interaction between the inflaton and the Higgs boson drives the Higgs field to small values

during inflation. This is closely related to an earlier claim [5,6] that the curvature coupling

of the Higgs boson resembles an additional mass term �⇠R in the Higgs potential and could

stabilise the Higgs boson. We shall argue below this interpretation of the curvature term

is not entirely correct, and in fact the two mechanisms are closely related when carried out

correctly. Assuming that there is no new physics between the weak scale and the scale of

inflation, we shall derive a new prediction for the value of the non-minimal coupling of the

Higgs boson to the Ricci scalar.

Before the discovery of the Higgs boson, cosmologists had already been investigating the

non-minimal coupling of scalars to curvature. In inflationary cosmology one often deals with

actions of the type

Sscalar =

Z
d4x

p�g

✓
1

2
@µ�@

µ�� 1

2
m2�2 +

1

2
⇠�2R

◆
, (2)

where m is the mass of the scalar field �. This coupling has been extensively studied, see

e.g. [8–12]. With the discovery of the Higgs boson, it became clear that this coupling was not

only an exotic term that could be implemented in curved space-time but that this coupling

is phenomenologically relevant.

Before deriving our prediction for the value of the non-minimal coupling of the Higgs

boson to curvature, we need to address a common misconception which can be very important

when discussing Higgs physics within the context of cosmology and very early universe

physics. It is often argued that the non-minimal coupling which appears in Eq.(2) of a

scalar field to curvature is identical to a contribution to the mass of the scalar field that is

curvature dependent. We will prove that this is not strictly correct. We will then show that

the non-minimal coupling of the Higgs boson to curvature does actually help to stabilize the

Higgs potential, and furthermore it can even drive the Higgs field towards the false vacuum

from a Planck-scale initial value.

We shall first address the issue of the Higgs mass. If one naively varies the action for a

scalar field � containing the non-minimal coupling (2), one obtains the field equation

(⇤+m2 � ⇠R)� = 0, (3)

and it is often argued that this term ⇠R is a curvature dependent mass term for the scalar

field �. In a FRW background, the curvature drops from R = 12H2 during inflation, with
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Higgs	in	cosmology	
•  Starting with the standard model coupled to GR, we have

•  After electroweak symmetry breaking, the scalar boson gains a 
non-zero vacuum expectation value, v = 246 GeV, M and ξ are 
then fixed by the relation 

•  Key message: H is not the Higgs field, as the non-minimal 
coupling induces a mixing between the kinetic terms of the 
Higgs and the metric.
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constant expansion rateH, to R ⇡ 0 in a radiation dominated era after inflation, which could

lead to an overproduction of the Higgs boson after inflation [18,19]. This argument is however

incomplete. The problem is that the non-minimal coupling induces a mixing between the

kinetic term of the scalar field and of the metric field. We will illustrate this point with

the standard model of particle physics, since this is the only model so far that contains

a fundamental scalar field which has actually been discovered experimentally, however the

same line of reasoning applies to any scalar field non-minimally coupled to curvature.

Starting with the standard model Lagrangian LSM , we have

S =

Z
d4x

p�g

✓
1

2
M2 + ⇠H†H

◆
R� (DµH)†(DµH)� LSM

�
(4)

where H is the SU(2) scalar doublet, we shall see that this is not actually the Higgs boson of

the standard model. After electroweak symmetry breaking, the scalar boson gains a non-zero

vacuum expectation value, v = 246 GeV, M and ⇠ are then fixed by the relation

(M2 + ⇠v2) = M2
P . (5)

The easiest way to see thatH is not actually the Higgs boson is by doing a transformation

to the Einstein frame [13–15] g̃µ⌫ = ⌦2gµ⌫ , where ⌦2 = (M2 + 2⇠H†H)/M2
P . The action in

the Einstein frame then reads

S =

Z
d4x

p
�g̃


1

2
M2

P R̃� 3⇠2

M2
P⌦

4
@µ(H†H)@µ(H†H)� 1

⌦2
(DµH)†(DµH)� LSM

⌦4

�
. (6)

Expanding around the Higgs boson’s vacuum expectation value and specializing to unitary

gauge, H = 1p
2
(0,�+v)>, we see that in order to have a canonically normalized kinetic term

for the physical Higgs boson we need to transform to a new field � where

d�

d�
=

s
1

⌦2
+

6⇠2v2

M2
P⌦

4
. (7)

Expanding 1/⌦, we see at leading order the field redefinition simply has the e↵ect of a wave

function renormalization of � = �/
p
1 + � where � = 6⇠2v2/M2

P . Thus the canonically

normalized scalar field, i.e., the true Higgs boson, does not have any special coupling to

gravity and it couples like any other field to gravity in accordance with the equivalence

principle.

This e↵ect can also be seen in the Jordan frame action (4) as arising from a mixing

between the kinetic terms of the Higgs and gravity sectors. After fully expanding the Higgs

boson around its vacuum expectation value and also the metric around a fixed background,
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between the kinetic terms of the Higgs and gravity sectors. After fully expanding the Higgs

boson around its vacuum expectation value and also the metric around a fixed background,
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Higgs	mixing	
•  Let’s transform the action to the Einstein	frame	

•  with		

•  Let’s	now	use	the	unitary	gauge	

•  The	physical	Higgs	boson	is	given	by	
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constant expansion rateH, to R ⇡ 0 in a radiation dominated era after inflation, which could

lead to an overproduction of the Higgs boson after inflation [18,19]. This argument is however
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•  Thus the canonically normalized scalar field, i.e., the true Higgs 
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Same	effect	in	the	Jordan	frame	
•  After fully expanding the Higgs boson around its vacuum 

expectation value and also the metric around a fixed 
background, 

•  we find

•  and we see the same mixing appearing! We need to 
diagonalize the fields
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We again find the physical Higgs boson gets renormalized by a factor 1/
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These results demonstrate that the non-minimal coupling does not introduce stronger

gravitational interactions for the Higgs boson once its field has been correctly canonically

normalized. We stress that the underlying reason is that there is no violation of the equiv-

alence principle. Our findings are in sharp contrast to the claims made in [20]. The only

valid bound to date on the non-minimal coupling of the Higgs boson to curvature is that

obtained in [1], namely that its non-minimal coupling is smaller than 2.6⇥ 1015. While the

fact that we may be living in a metastable vacuum is problematic for the Higgs boson in

an inflationary context, the non-minimal coupling of the Higgs boson to curvature does not

create a new problem. On the contrary, we shall now show that this non-minimal coupling

could solve the stability issue.

Let us now study the coupling of the Higgs boson to an inflationary potential VI(�) that

is induced by the mapping from the Jordan frame to the Einstein frame. Indeed, even if no

direct coupling between the Higgs boson is assumed in the Jordan frame, it will be induced
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immediately that
VI(�⌦)

⌦4
⇡ VI(�)

�
1� 2⇠�2/M2

p

�
. (12)

A coupling between the inflaton and the Higgs field is induced by the transformation to
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Physics	of	the	non-minimal	coupling	

•  These results demonstrate that the non-minimal coupling does not 
introduce stronger gravitational interactions for the Higgs boson 
once its field has been correctly canonically normalized. 

•  The underlying reason is that there is no violation of the 
equivalence principle. 

•  For very large ξ, the Higgs boson decouples from all particles of 
the standard model because of the wavefunction renormalization. 

•  The fact that the Higgs boson behaves like the Higgs boson of the 
standard model at the LHC leads to the following bound on ξ:

             ξ < 2.6 ×1015
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•  While the fact that we may be living in a metastable vacuum is 
problematic for the Higgs boson in an inflationary context, the 
non-minimal coupling of the Higgs boson to curvature does not 
create a new problem. 

•  On the contrary, we shall now show that this non-minimal 
coupling could solve the stability issue. 

•  The non-minimal coupling will induce a coupling between the 
Higgs boson and the inflaton whether we had one in the original 
theory or not.

•  Even if no direct coupling between the Higgs boson is assumed in 
the Jordan frame, it will be induced in the Einstein frame: 
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Small	Higgs	field	values	
•  Let us first consider the range

•  We find immediately:

•  A coupling between the inflaton and the Higgs field is induced by the 
transformation to the Einstein frame. 

•  Note that there is a priori no reason to exclude a coupling of the type 
VI H†H in the Jordan frame where the theory is defined.

•  There could be cancelations between this coupling and that generated 
by the map to the Einstein frame. 

•  The magnitude of the coupling between the Higgs boson and the 
inflaton appearing in the mapped inflationary potential thus cannot be 
regarded as a prediction of the model. 
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⌘2 , (11)

but bear in mind that the inflaton field � does not have a canonically normalized kinetic

term.

Let us first consider small Higgs field values (� ⌧ v). In that case, we see immediately

that
VI(�⌦)

⌦4
⇡ VI(�)

�
1� 4⇠v�/M2

p

�
. (12)

A coupling between the inflaton and the Higgs field is induced by the transformation to

the Einstein frame. Note that there is a priori no reason to exclude a coupling of the type

4



Large	Higgs	field	values:	early	universe	

•  Let us now consider the range:

•  As explained previously, even if one is willing to fine-tune the initial 
condition for the value of the Higgs field, it will experience quantum 
fluctuations of the order of the Hubble scale.

•  Unless the Hubble scale is much smaller than the energy scale at which 
the electroweak vacuum becomes unstable, the Higgs field is likely to 
swing into the lower true vacuum of the theory. 

•  Even if we start the universe with a large Higgs field value, the induced 
coupling to the inflaton can drive the Higgs boson to the false vacuum.
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VIH†H in the Jordan frame where the theory is defined. There could be cancelations between

this coupling and that generated by the map to the Einstein frame. The magnitude of the

coupling between the Higgs boson and the inflaton appearing in the mapped inflationary

potential thus cannot be regarded as a prediction of the model. Let us ignore a potential

direct inflaton-Higgs coupling for the time being and continue our investigation of the induced

coupling. We will now show that a non-minimal coupling of the Higgs boson to curvature

can solve some of the problems associated with Higgs cosmology within the standard model

of particle physics.

In the early universe we need to consider large Higgs field values (v ⌧ � ⌧ MP |⇠|�1/2)).

As explained previously, even if one is willing to fine-tune the initial condition for the value

of the Higgs field, it will experience quantum fluctuations of the order of the Hubble scale

H. Unless the Hubble scale is much smaller than the energy scale at which the electroweak

vacuum becomes unstable, the Higgs field is likely to swing into the lower true vacuum of the

theory. A Higgs non-minimal coupling to the Ricci scalar could actually solve this problem

since, as we will show, it will generate a direct coupling between the Higgs boson and the

inflaton if the Jordan frame action contains an inflationary potential VI .

It has been shown that a direct coupling between the Higgs boson and the inflaton can

drive the Higgs field [3] to the false electroweak vacuum quickly during inflation even if the

Higgs field initial value is chosen to be large. There are basically three scenarios for the

onset of inflation: the thermal initial state [21], ab initio creation [22, 23] and the chaotic

initial state [24, 25]. The thermal initial state starting from a temperature just below the

Planck scale would introduce thermal corrections to the Higgs potential preventing vacuum

decay until the temperature fell to the inflationary de Sitter temperature, at which point

it becomes a question of vacuum fluctuation as to whether the Higgs survives in the false

vacuum. However, the consistency of thermal equilibrium of the standard model fields

when the Higgs takes a large value has not yet been verified. The ab initio creation is an

attractive possibility, where the Higgs would nucleate at the top of the potential barrier. In

this case also, stability depends on the size of vacuum fluctuations during inflation. The final

possibility, the chaotic initial state, would have the Higgs field start out at arbitrarily large

values. The most likely initial values would be larger than the instability scale ⇤, preventing

the Higgs field from entering the false vacuum. An anthropic argument could be applied to

rule out these initial conditions, but we shall see that the non-minimal curvature coupling of

the Higgs boson can force the Higgs into the false vacuum without anthropic considerations.

As we have seen, the Einstein frame potential is given by

VE =
VI(�) + V�(�)

(1 + ⇠2�2)2
(13)

5



Driving	the	Higgs	to	the	false	vacuum	
•  To drive the Higgs boson to the false vacuum during inflation, the 

interaction of the Higgs with the inflaton must act like a mass term for the 
Higgs during inflation (sign of the non-minimal coupling matters!) and 
dominate over the inflaton potential.
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where 2 = 8⇡G. The inflationary expansion rate HI is the expansion rate of the false

vacuum,

H2
I =

VI(�)

3M2
p

. (14)

The most extreme chaotic initial condition, and the one relevant to eternal chaotic inflation,

is one where VE is close to the Planck scale. For an unstable Higgs potential V�, this is only

possible when ⇠ < 0, as shown in Fig. 1.

Figure 1: The Einstein frame Higgs potential VE(�) for di↵erent values of the false-vacuum

inflation rate HI for ⇠ = �2. The potential vanishes at � = �m, and there is an asymptote at

� = �c. Consistency of the model (no ghosts) requires � < �c. An initial condition VE ⇠ M4
p

can be achieved with the initial � close to �c.

Let us denote by �m the value of the field at which the potential vanishes,

VI(�) + V�(�m) = 0. (15)

Note that �m depends on HI . The asymptote in the potential is at �c,

1 + ⇠�2
c/M

2
p = 0. (16)

Provided that �c < �m, then there is an initial value of � close to �m at which VE ⇠ M4
p

(note that it has been shown in [7] that even with a large non-minimal coupling of the Higgs

boson to curvature, the cuto↵ of the e↵ective field theory can be as large as the Planck

scale), since � = �c is an asymptote. If �c > �m, then there is no such value.

6

The	Einstein	frame	Higgs	potenSal	VE(φ)	for	
different		values	of	the	false-vacuum	inflaSon	
rate	HI	for	ξ	=	−2.	
	
	The	potenSal	vanishes	at	φ	=	φm,	and	there	
	is	an	asymptote	at	φ	=	φc.	
	
	Consistency	of	the	model	(no	ghosts)		
requires	φ	<	φc.		
	
An	iniSal	condiSon	VE	∼	MP

4	can	be	achieved	
with	the	iniSal	φ	close	to	φc.		
	



•  The early evolution of the Higgs field is described by the 
equation 

•  For the inflaton, one has �

•  where the expansion rate is given by 

•  For χ > MP, we have

•  There is thus rapid evolution of χ and slow evolution of σ 
(assuming slow-roll conditions on VI ). 
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Starting form the initial value, the Higgs field evolves to small field values on a timescale

comparable to the Hubble expansion rate. Unfortunately, we cannot simply expand the

conformal factor in the denominator of the Einstein frame potential for all values of ⇠.

However, it is straightforward to see this e↵ect from kinetic terms of the Higgs boson and

of the inflaton. The kinetic terms for the Higgs and inflaton are multiplied by g� and g�
respectively, where

g� =
1 + ⇠2�2 + 6⇠22�2

1 + ⇠2�2
, g� =

1

1 + ⇠2�2
(17)

Note that is it possible to use a canonically normalised Higgs field � as we had done pre-

viously, but not both the Higgs and inflaton fields at the same time because the field space

metric is curved.

The early evolution of the Higgs field is described by the equation

�̈+ 3H�̇+
dVE

d�
= 0. (18)

For the inflaton, one has

(g��̇)̇ + 3Hg��̇ +
dVE

d�
= 0, (19)

while the expansion rate is given by

3H2 = 2

✓
1

2
g��̇

2 +
1

2
�̇2 + VE

◆
. (20)

The inflaton equation can also be written as

�̈ +

✓
1

g�

dg�
d�

◆
�̇�̇ + 3H�̇ +

1

g�

dVE

d�
= 0. (21)

Note that the second term in this equation is not considered in [3]. For � > Mp, we have

VE ⇡ (VI + V�)e
p

8/3(���0), g� ⇡ e
p

8/3(���0). (22)

There is thus rapid evolution of � and slow evolution of � (assuming slow-roll conditions on

VI). Indeed, the inflaton evolves on a longer timescale than the Higgs field, leaving a gradual

reduction in HI , and also �m. Eventually the potential evolves to �c > �m, but at all stages

the Higgs field lies on the false vacuum side of the potential barrier. As long as the vacuum

fluctuations do not cause quantum tunnelling, the Higgs field will enter the false vacuum.

The condition that �c < �m implies limits on the curvature coupling ⇠. In order to

determine these limits we need to calculate �m from (15), and this requires an expression

for the Higgs potential. For a standard model Higgs field, the large field Higgs potential in

flat space is given by

V� =
1

4
�(�)�4 (23)
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A	specific	example	

25	

•  For large Higgs field values we have

•  To remain within the range of calculability, we request that φ ∼ H 
< 0.1MP as for larger  values than this we would have to consider 
a series of higher dimensional operators of the type

which would spoil the predictability of any model. 

•  For (6ξ2+ξ) < 100, one finds χ≈φ 
		

As expected, the Higgs boson decouples from the inflationary potential even for a very

large non-minimal coupling. Note that there is a priori no reason to exclude a coupling

of the type VinfH
†H in the Jordan frame where the theory is defined. There could be

cancelations between this coupling and that generated by the map to the Einstein frame.

The magnitude of the coupling between the Higgs boson and the inflaton appearing in the

mapped inflationary potential thus cannot be regarded as a prediction of the model. Let

us ignore a potential direct inflaton-Higgs coupling for the time being and continue our

investigation of the induced coupling.

In the early universe we need to consider large Higgs field values. We will focus on

v < � < MP , values of � larger than the Planck mass would force us to consider unknown

quantum gravitational e↵ects. For this range of values of Higgs field, the field redefinition

become
d�

d�
=

s
1

⌦2
+

6⇠2�2

M2
P⌦

4
(15)

To remain within the range of calculability, we request that � ⇠ H < 0.1MP as for larger

values than this we would have to consider a series of higher dimensional operators of the

type (H†H)n/M (2n�4)
P which would spoil the predictability of any model. For (6⇠2+⇠) < 100,

one finds � ⇡ � (and ⌦�2 ⇡ 1� ⇠�2/M2
P ) and we have

Vinf (�⌦)

⌦4
⇡ Vinf (�⌦)

✓
1� 2⇠

�2

M2
P

◆
(16)

while for (6⇠2 + ⇠) > 100 we have � =
p

3/2MP log (⌦2(�)) and (⌦2 = exp(
p

2/3�/MP ))

and we find
Vinf (�⌦)

⌦4
⇡ exp(�2

p
2/3�/MP )Vinf (�⌦). (17)

For a inflationary potential of the type m2
��

2 + ���
4 we obtain

Vinf (�⌦)

⌦4
=

(
m2

��
2
⇣
1� ⇠ �2

M2
P

⌘
+ ���

4 for (6⇠2 + ⇠) < 100

m2
��

2 exp(�p
2/3�/MP ) + ���

4 for (6⇠2 + ⇠) > 100
(18)

Let us now show that the non-minimal coupling of the Higgs boson to curvature can

actually cure its cosmological problem in the context of inflation if this non-minimal coupling

is within a range that will we calculate. As explained previously, even if one is willing to

fine-tune the initial condition for the value of the Higgs field, it will experience quantum

fluctuations of the order of the Hubble scale H. Unless the Hubble scale is much smaller

than the energy scale at which the electroweak vacuum becomes unstable around 1010 GeV,

the Higgs field is likely to swing into the lower true vacuum of the theory. A Higgs non-

minimal coupling to the Ricci scalar could actually solve this problem since, as we have just
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than the energy scale at which the electroweak vacuum becomes unstable around 1010 GeV,
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•  For an inflationary potential of the type m2
σσ2 + λσσ4 we obtain 

•  We thus find a coupling between the inflaton and the Higgs given 
by

•  Lebedev and Westphal ( Phys. Lett. B 719, 415 (2013) ) that the 
Higgs boson is driven to the unstable vacuum during inflation if the 
coupling λ of the dimension four operator σ2χ2 is bounded by 

•  Here it translates into a bound on the non-minimal coupling
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As expected, the Higgs boson decouples from the inflationary potential even for a very

large non-minimal coupling. Note that there is a priori no reason to exclude a coupling

of the type VinfH
†H in the Jordan frame where the theory is defined. There could be

cancelations between this coupling and that generated by the map to the Einstein frame.

The magnitude of the coupling between the Higgs boson and the inflaton appearing in the

mapped inflationary potential thus cannot be regarded as a prediction of the model. Let

us ignore a potential direct inflaton-Higgs coupling for the time being and continue our

investigation of the induced coupling.

In the early universe we need to consider large Higgs field values. We will focus on

v < � < MP , values of � larger than the Planck mass would force us to consider unknown

quantum gravitational e↵ects. For this range of values of Higgs field, the field redefinition

become
d�

d�
=
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6⇠2�2

M2
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4
(15)

To remain within the range of calculability, we request that � ⇠ H < 0.1MP as for larger

values than this we would have to consider a series of higher dimensional operators of the

type (H†H)n/M (2n�4)
P which would spoil the predictability of any model. For (6⇠2+⇠) < 100,

one finds � ⇡ � (and ⌦�2 ⇡ 1� ⇠�2/M2
P ) and we have
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shown, it will generate a direct coupling between the Higgs boson and the inflaton if the

Jordan frame action contains an inflationary potential Vinf .

In order to illustrate our point we will assume the potential of the inflaton to be that of

chaotic inflation. We have seen that for (6⇠2 + ⇠) < 100 (i.e. �25/6 < ⇠ < 4), the map to

the Einstein frame generates a coupling between the mass term of the inflaton and the true

Higgs field. We have seen that in that parameter range for the non-minimal coupling, the

coupling of the Higgs boson to the inflaton is given by

� = �m2
�

M2
P

⇠. (19)

Such a coupling should not be too large not to lead to large radiative corrections to the

inflaton potential during the last 60 e-folds: �  10�6 [3]. The authors of [3] have shown

that the electroweak vacuum is actually stabilized by the coupling to the inflaton if the

coupling � of the dimension four operator �2�2 is bounded by 5 ⇥ 10�11 < � < 5 ⇥ 10�7.

The lower bound is obtained by imposing the dominance of the classical roll of the inflaton

over quantum fluctuations [17]. Note that our result depends on the sign of ⇠ which must be

taken negative to get a correction with the same sign of the mass term of the inflaton mass

term. We stress that the details of this analysis do not depend on the specific model of high

scale inflation, as long as the inflaton is given a mass of the order of 10�5MP .

If we take m� = 10�5MP , we see, that � ⇠ �1 ⇥ 10�10⇠, we find �0.5 � ⇠ � �5 ⇥ 103.

Imposing the condition that � < 0.1MP , we find that for a non-minimal coupling in the

range �0.5 � ⇠ � �25/6, inflation naturally drives the Higgs field to small field values as

explained in [3] in a di↵erent setting. We emphasize that this is not an argument for a small

non-minimal coupling of the Higgs to curvature as the same e↵ect could be generated by

a direct coupling VinfH
†H in the Jordan frame and the non-minimal coupling of the Higgs

could take an arbitrary value as long as it is below the direct bound ⇠ < 1015 obtained using

LHC data [1].

Our results also imply that the non-minimal coupling of the Higgs boson will not influence

reheating as long as the Higgs field value is small during inflation. Reheating could be

generated by a direct coupling of the Higgs boson to the inflaton via either couplings of the

type �2H†H or �H†H. As usual right-handed neutrinos N could also play a role in reheating

via a coupling N̄N�.However, none of these couplings will be significantly influenced by the

conformal factor or the rescaling of the Higgs boson as long as one is considering small Higgs

field values.

We have seen that a non-minimal coupling of the Higgs boson to the Ricci scalar does not

generate new issues for Higgs boson physics in the early universe and that, on the contrary,

there is a range of values for ⇠ for which the Higgs potential is stabilized thanks to the
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Generic	case	
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For generic values of ξ, we cannot expand the potential as we did previously. 
However, we can see the same effect from requiring that the coupling of the Higgs 
to the inflaton dominates over the inflaton potential which fixes the initial conditions 
for which the Higgs is driven to the false vacuum.

In curved space, the Higgs develops a mass of order H multiplied by Higgs couplings, but

we can think of this as a radiative correction to ⇠ and regard ⇠ as the e↵ective curvature

coupling at the inflationary scale. Other curvature corrections to the Higgs potential may

well be important, but for now these will be neglected.

The e↵ective Higgs coupling �(�) vanishes at some large value of � which we identify

as the instability scale ⇤. The value of ⇤ is very strongly dependent on the top quark

mass, and currently all we can say is that it lies in the range 109 � 1018 GeV. Furthermore,

adding additional particles to the standard model changes the instability scale (or removes

the instability altogether). It is therefore convenient to give results treating ⇤ as a free

parameter. In the range of Higgs field values where the potential barrier lies, we use an

approximation to the running coupling given by

�(�) ⇡ b

(✓
ln

�

Mp

◆4

�
✓
ln

⇤

Mp

◆4
)
, (24)

with b ⇡ 0.75⇥ 10�7. This fits quite well to the renormalisation group calculations [2].

Figure 2: The lower bound on �⇠, where ⇠ is the curvature coupling, for consistent chaotic

initial conditions on the Higgs field which will lead the Higgs into the false vacuum. The

horizontal axis is the Higgs stability scale. The di↵erent curves from bottom to top are for

the false vacuum Hubble parameter 0.1Mp to 10�4Mp. The dashed lines show the lower

bound for quantum stability of the false vacuum.

The plots in Fig. (2) show numerical results for the values of �⇠ which are lower bounds

of the range which is consistent with chaotic initial conditions. Also shown by the dashed
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•  The	lower	bound	on	−ξ,		for	consistent	
chaoSc	iniSal		condiSons	on	the	Higgs	
field	which	will	lead	the	Higgs	into	the	
false	vacuum.		

•  The	horizontal	axis	is	the		Higgs	stability	
scale.		

•  The	different	curves	from		boRom	to	top	
are	for	the	false		vacuum	Hubble	
parameter	0.1	MP	to	10−4MP.	

•  The	dashed	lines	show	the	lower	bound	
for	quantum	stability	of	the	false	vacuum.		

	



Conclusion	
•  The standard model is not compatible with high scale inflation 

because of the at best metastability of the electroweak vacuum.

•  A non-minimal coupling of the Higgs boson to curvature does 
not generate any new issues in cosmology.

•  On the contrary it can generate a coupling between the Higgs 
boson and the inflaton and drive it to the false vacuum.

•  Such investigations are possible thanks to the progress in our 
understanding of effective field theories applied to quantum 
gravity which enable one to make serious calculations in early 
universe cosmology.
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