## 3D Medipix Testbeam Scatter fits for background subtraction <br> Aaron Mac Raighne

## Using planar C4_1

taking the 5 acquisition files from this position and using GuassFit.m found the $x$ and $y$ cross sections for these five files


The fits must only be taken from the files which correspond to a beam in the centre of the pixel so that we can be sure that there are no charge sharing effects and the tail effects from the Gaussian of the 'focussed beam' are minimal

## Example of the beam from the final aq file opened 1stPixelScan2889.txt and the five cross sections in $x$ and $y$



Double Gaussian fit to the first of the aq. file cross section


General model Gauss2:
$f(x)=a 1^{*} \exp \left(-((x-b 1) / c 1)^{\wedge} 2\right)+a 2^{*} \exp \left(-((x-b 2) / c 2)^{\wedge} 2\right)$
Coefficients (with $95 \%$ confidence bounds):
$\mathrm{a} 1=1.1 \mathrm{e}+004(-3.215 \mathrm{e}+008,3.215 \mathrm{e}+008)$
b1 $=11.28(-3380,3402)$
c1 $=0.3221(-2441,2442)$
$\mathrm{a} 2=957.6(558.2,1357)$
$b 2=10.93(10.22,11.64)$
c2 $=4.161(2.502,5.821)$
Goodness of fit:
SSE: 5.691e+004
R-square: 0.998
Adjusted R-square: 0.9956
RMSE: 119.3

General model Gauss2:
$f(x)=a 1^{*} \exp \left(-((x-b 1) / c 1)^{\wedge} 2\right)+a 2^{*} \exp \left(-((x-b 2) / c 2)^{\wedge} 2\right)$ Coefficients:

| $\mathrm{a} 1=$ | 5823 |
| :--- | ---: |
| $\mathrm{~b} 1=$ | 11.02 |
| $\mathrm{c} 1=$ | 0.6421 |
| $\mathrm{a} 2=$ | 506.2 |
| $\mathrm{~b} 2=$ | 9.992 |
| $\mathrm{c} 2=$ | 2.263 |

Goodness of fit:
SSE: 1.228e-023
R-square: 1
Adjusted R-square: NaN
RMSE: NaN


This is the same as shown before but excluding the centre pixel and the zeros and fitting a single Gaussian to look at the scattering contribution alone

General model Gauss1: $f(x)=a 1^{*} \exp \left(-((x-b 1) / c 1)^{\wedge} 2\right)$
Coefficients (with 95\% confidence bounds):
$\mathrm{a} 1=$
$\mathrm{b} 1=$
$\mathrm{c}=$
$\mathrm{c} 1324(853.7,1794)$
$=$ $1.57(10.58,11.07)$

Goodness of fit:
SSE: 2.267e+004
R-square: 0.9739
Adjusted R-square: 0.9565
RMSE: 86.94

Compared to the double Gaussian
General model Gauss2:

$$
f(x)=a 1^{*} \exp \left(-((x-b 1) / c 1)^{\wedge} 2\right)+a 2^{*} \exp \left(-((x-b 2) / c 2)^{\wedge} 2\right)
$$

Coefficients:
$\mathrm{a} 1=5823$
b1 = 11.02
$\mathrm{c} 1=0.6421$
a2 $=506.2$
b2 = 9.992
c2 $=2.263$


Goodness of fit:
SSE: 1.228e-023
R-square: 1
Adjusted R-square: NaN
RMSE: NaN

Gaussian funtion for the back scatter taken from cross section



Zoomed in to show view across ~3 pixels




## Issues

- Needs to be done in 2D, can take a cross section in the $y$-dir also and generate a 2D function
- Because this depends on the distance from the centre of the pixel a source of error will be found in determining the centre of the pixel
- Time consuming, need to write script to go through all the acquisition files and rebuild the pixel maps

