The new MYTHEN III detector prototype

Microstrip system for Time rEsolved experimeNts

M. Andrä¹, A. Bergamaschi¹, R. Barten¹, M. Brückner¹, R. Dinapoli¹, E. Fröjdh¹, D. Greiffenberg¹, C. Lopez-Cuenca¹, D. Mezza¹, A. Mozzanica¹, M. Ramilli¹, S. Redford¹, M. Ruat¹, C. Ruder¹, B. Schmitt¹, X. Shi¹, D. Thattil¹, G. Tinti¹, S. Vetter¹ and J. Zhang¹ ¹-Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland

Wir schaffen Wissen - heute für morgen

The new Mythen III chip

- ideally noiseless

- large dynamic range

- fluorescence suppression

What is MYTHEN?

- silicon microstrip detector with 50 µm pitch, 8 mm long strips
- single photon counting
- for time-resolved powder diffraction, medical imaging, etc

Why a strip detector? Why photon counting?

- less channels per area: fast frame rates
- small pitches possible: high resolution
- large angular coverage

Comparators Sensor Amplifier Shaper with separate adjustable threshold

*Vrf changes the feedback resistance, i.e. the gain and shaping time

What is new?

- three comparators and three 24-bit-counters for:
 - energy-windowing
 - count rate improvement (track pile-up)
 - pump-probing with multiple time slots, counters are independently gateable
- reduced threshold dispersion
- improved noise performance
- small dead time → increased count rate capability

Counters with

independent

gate

Threshold scans

All data are taken with a preliminary readout system!

The number of photon hits is a function of the threshold:

$$N_{\gamma}(E_{thr}) = \frac{N_0}{2} \left(1 + C_s(E_{\gamma} - E_{thr}) \right) \left(1 + Erf\left(\frac{E_{\gamma} - E_{thr}}{\sqrt{2} Noise}\right) \right)$$

*Noise = extra counts due to pulse height variations overcoming the comparator threshold

The threshold dispersion is given by the spread of the inflection points, i.e. the resulting thresholds, over all sensor-strips.

The threshold dispersion

- depends on the gain (Vrf) √
- depends slightly on the photon energy?
- 2.5-4.5% at 22 keV
- 6-10% at 8 keV

Noise performance

The noise decreases with increasing gain √ and falls below 200 eat moderate gains $\sqrt{\ }$, but depends linearly on the photon energy ?

Rate capability

rate vs the

reference rate I_{λ}^{*}

*given by the beamline

2. Estimate the ideal

theoretical rate

with a linear fit

10° Theoretical Rate [Hz] 1. Plot the measured 3. Fit the ratio ε of

time τ_d with: $ε = exp(-\tau_d \Phi)^*$

the measured and theoretical rate Ф to find the shaping

The shaping time - increases with the

gain (Vrf) √ - allows for fast count rates √

*paralyzable counter model [1]

- scans at different photon energies
- 2. Extract the inflection points
- Calibration Ē 1500<u></u> 1200 | 1200 | 1200 | 1 1100 1000 Photon Energy [keV]
 - 3. Calculate the gain [DACunits/keV] for every Vrf-setting
- The gain - increases with Vrf √ - starts to saturate at high Vrf √

References

[1] A. Bergamaschi et al, The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source (2010), J. Synchrotron Rad.(2010) 17, 653-668

Conclusion

2020 2017 2018 2019 Module design Submission of First prototype Submission of Installation of the detector MYTHEN 3.1 MYTHEN 3.0 at the beamline and production