The new MYTHEN III detector prototype Microstrip system for Time rEsolved experimeNts M. Andrä¹, A. Bergamaschi¹, R. Barten¹, M. Brückner¹, R. Dinapoli¹, E. Fröjdh¹, D. Greiffenberg¹, C. Lopez-Cuenca¹, D. Mezza¹, A. Mozzanica¹, M. Ramilli¹, S. Redford¹, M. Ruat¹, C. Ruder¹, B. Schmitt¹, X. Shi¹, D. Thattil¹, G. Tinti¹, S. Vetter¹ and J. Zhang¹ ¹-Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland # Wir schaffen Wissen - heute für morgen # The new Mythen III chip - ideally noiseless - large dynamic range - fluorescence suppression # What is MYTHEN? - silicon microstrip detector with 50 µm pitch, 8 mm long strips - single photon counting - for time-resolved powder diffraction, medical imaging, etc # Why a strip detector? Why photon counting? - less channels per area: fast frame rates - small pitches possible: high resolution - large angular coverage Comparators Sensor Amplifier Shaper with separate adjustable threshold *Vrf changes the feedback resistance, i.e. the gain and shaping time ## What is new? - three comparators and three 24-bit-counters for: - energy-windowing - count rate improvement (track pile-up) - pump-probing with multiple time slots, counters are independently gateable - reduced threshold dispersion - improved noise performance - small dead time → increased count rate capability Counters with independent gate # **Threshold scans** # All data are taken with a preliminary readout system! The number of photon hits is a function of the threshold: $$N_{\gamma}(E_{thr}) = \frac{N_0}{2} \left(1 + C_s(E_{\gamma} - E_{thr}) \right) \left(1 + Erf\left(\frac{E_{\gamma} - E_{thr}}{\sqrt{2} Noise}\right) \right)$$ *Noise = extra counts due to pulse height variations overcoming the comparator threshold The threshold dispersion is given by the spread of the inflection points, i.e. the resulting thresholds, over all sensor-strips. The threshold dispersion - depends on the gain (Vrf) √ - depends slightly on the photon energy? - 2.5-4.5% at 22 keV - 6-10% at 8 keV # Noise performance The noise decreases with increasing gain √ and falls below 200 eat moderate gains $\sqrt{\ }$, but depends linearly on the photon energy ? # Rate capability rate vs the reference rate I_{λ}^{*} *given by the beamline 2. Estimate the ideal theoretical rate with a linear fit 10° Theoretical Rate [Hz] 1. Plot the measured 3. Fit the ratio ε of time τ_d with: $ε = exp(-\tau_d \Phi)^*$ the measured and theoretical rate Ф to find the shaping The shaping time - increases with the gain (Vrf) √ - allows for fast count rates √ *paralyzable counter model [1] - scans at different photon energies - 2. Extract the inflection points - Calibration Ē 1500<u></u> 1200 | 1200 | 1200 | 1 1100 1000 Photon Energy [keV] - 3. Calculate the gain [DACunits/keV] for every Vrf-setting - The gain - increases with Vrf √ - starts to saturate at high Vrf √ # References [1] A. Bergamaschi et al, The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source (2010), J. Synchrotron Rad.(2010) 17, 653-668 # Conclusion 2020 2017 2018 2019 Module design Submission of First prototype Submission of Installation of the detector MYTHEN 3.1 MYTHEN 3.0 at the beamline and production