PAUL SCHERRER INSTITUT

Marie Ruat ^(PSI, ESRF), M. Andrae, R. Barten, A. Bergamaschi, M. Brückner, S. Cartier, R. Dinapoli, E. Fröjdh, D. Greiffenberg, C. Lopez-Cuenca, D. Mezza, A. Mozzanica, M. Ramilli, S. Redford, C. Ruder, B. Schmitt, X. Shi, D. Thattil, G. Tinti, S. Vetter, J. Zhang

Microstrip detectors with GaAs sensors

19th International Workshop on Radiation Imaging Detectors 04.07.2017 – Krakow, Poland

Detectors at PSI: Single Photon Counters

	MYTHEN	PILATUS ¹	EIGER ¹	
Pixel size	50 μm (Strips)	172 x 172 μm²	75 x 75 μm²	
Maximum system size	120º (=48 modules)	6M (=42 x 43 cm²)	9M (=23 x 23 cm²)	
Count rate capability	0.6 MHz/Strip (10% deviation, Standard)	0.5-1.0 MHz/Pixel (10% deviation)	0.2-0.7 MHz/Pixel (10% deviation)	
Maximum frame rate	1 kHz/Module	300 Hz/Module	23 kHz (4-bit)	
Applications (Examples)	 Powder Diffraction Energy dispersive Spectrometer Beam Position Monitors 	 Protein Crystallography Time-resolved experiments Small and wide-angle X-Ray Scattering (SAXS/WAXS) 	 Protein Crystallography XPCS Coherent X-Ray Imaging Photoelectron detection 	

Detectors at PSI: Single Photon Counters... And charge integrators

	MYTH		Р	ILATUS ¹	EIGER ¹
	GOTTHARD	AGIPD ¹		JUNGFRAU	MÖNCH
	ALL AND				
Pixel size	50 μm (Strips)	200 x 200	μm²	75 x 75 μm²	25 x 25 μm²
Noise (r.m.s.)	<300 e⁻ ENC	<322 e ⁻ ENC <214 e ⁻ ENC (HG)		<100 e ⁻ ENC <55 e ⁻ ENC (HG)	35 e ⁻ ENC
Dynamic range	<1 [.] 10 ⁴ x 12.4 keV (3 gain stages)	<1 [.] 10 ⁴ x 12. (3 gain stag	4 keV ges)	<1·10 ⁴ x 12.4 keV (3 gain stages)	<pre><500 x 12.4 keV (2 gain stages)</pre>
Maximum frame rate	40 kHz (cont.) 1 MHz (burst)	< 5 MH (burst/352 fr	z ames)	2.4 kHz (continuous)	6-8 kHz (continuous)

<u>For more details</u>: Moench talk Monday 11:20, M. Ramilli, Gotthard poster B07, J. Zhang (Monday), Mythen3 poster B12, M. Andrae (Monday), Jungfrau poster A20, S. Redford (Wednesday), Jungfrau talk Wednesday 10:00, A. Mozzanica

Detectors with High-Z sensors: Context

Detectors originally developed for silicon sensors

In the context of:

- State of the art beamlines wanting to operate at higher X-ray energies, ex. X-ray diffraction for Material science at 40 keV
- Synchrotron facilities upgrades with higher brilliance and higher energies available

→ Evaluate the performance of existing detector readout chips with high-Z sensors

Strip detectors with GaAs sensors

MYTHEN: Microstrip sYstem for Time rEsolved experimeNts

Single photon counting microstrip

- Standard geometry for silicon sensors: 50 μm pitch, 8 mm long
- Single modules 1280 channels, 6.4 cm available for different geometries
- Frame rate up to 20 Hz 1 kHz
 - Depending on dynamic and angular range
 - Burst mode up to 10 kHz, 32 frames
- Users operation at the SLS since 2007
 - In-situ measurements
 - Pump-probe experiments
 - Monitoring of radiation damage
 - Systems available also at the
 - Australian synchrotron, Diamond (UK), Alba (Spain), Spring8 (Japan), ESRF (France), DESY (Germany), APS (USA)...
 - Commercialized by DECTRIS

Diffraction, von Hamos spectrometers, beam monitoring...

A. Bergamaschi al., J. Synchrotron Rad. 17, 653-668 (2010): http://dx.doi.org/10.1107/S0909049510026051

MYTHEN with GaAs sensor

MYTHEN with GaAs sensor: Leakage current

Single Photon counting readout

Adds 1 count independently of the photon energy provided it's above threshold

- The threshold is used to suppress
 - the electronic noise
 - the fluorescence background
- High dynamic range
 - -Essentially noiseless
 - -No saturation
 - Counter depth

Detector calibration and characterization:

Expected counts (Energy) for monochromatic beam at 12 keV

A. Bergamaschi al., J. Synchrotron Rad. 17, 653-668 (2010): http://dx.doi.org/10.1107/S0909049510026051

10

MYTHEN with GaAs sensor: Energy calibration

PAUL SCHERRER INSTITUT

MYTHEN with GaAs sensor: Energy calibration

MYTHEN with GaAs sensor: Charge sharing

- CS lower at higher bias
- 40% less CS for 100 μm w.r.t 50 μm strips, compares to the expected 50%
- Charge sharing increasing for energies lower than 12 keV, then stable -> difficult fitting of the S-Curve at low energies

MYTHEN with GaAs sensor: Charge sharing

% of charge sharing as a function of the energy, comparison with Si sensor (450 μ m thick, +120V)

- Charge sharing in GaAs strips / charge sharing in Si strips = 2

RMS noise in electrons as a function of the energy, comparison with Si sensor (450 um thick, +120V)

- 30% higher noise for long 50 μm GaAs strips (increased input capacitance)
- Noise 15% lower for 100 μm GaAs strips as compared to Si
- Values for 50 μm / 8 mm Si strips compare with 50 μm / 2 mm GaAs strips

GOTTHARD 1.7 prototype architecture

.

.

- Dynamic gain switching: Not working in e collection mode
 - high DC gain, fully differential front-end
- High DC gain pre-amplifier (700-950)
- Continuous CDS sampling at > 18 MHz
- Fully differential output
- Available for plugging in ADC

GOTTHARD 1.7 with GaAs sensor

GOTTHARD 1.5 with GaAs sensor: noise

Mean noise in GO: 292 e- RMS, comparable to Si sensors

Leakage current and dynamic range

The dynamic range is reduced by 43 keV / μ s for 100 μ m strips and 31 keV / μ s for 50 μ m strips by the leakage current

Spectra from fluorescence irradiation

Fluorescence from Mo (17.5 keV), W (59.3 keV), Pb (74.9 keV)

GOTTHARD, CHARGE INTEGRATING

Fluorescence irradiation: Correlation plots

Negative signal depends on the incoming photon energy -> Currently working on clarifying this effect

Characterization of high-Z sensors with various readout chips shows good results, with no specific evaluation of the chips implemented so far

MYTHEN with GaAs

is showing reliable operation especially for the 100 μm strips:

- Leakage current OK & full collection efficiency at -200V
- Excellent linearity of energy calibration
- Noise 30 % higher than with silicon
- Charge sharing 50 % higher as compared to silicon
- Improve the yield of 50 μm strips
- Improve threshold dispersion
- High charge sharing

GOTTHARD with GaAs

is showing acceptable operation especially for the 100 μm strips

- Spectral peaks are visible
- Noise is similar to silicon sensors
- The energy calibration gives a 21 ADU/keV gain as expected
- Stable sensor response with time

 Dynamic range very limited by the leakage current

Negative signal effect to be clarified

Further characterization of both sensors and chips foreseen

Back: M. Ruat, B. Schmitt, S. Redford, A. Mozzanica, E. Fröjdh Middle: J. Zhang, C. Lopez-Cuenca, M. Andrä, R. Barten, M. Brückner, C. Ruder, D. Greiffenberg, S. Vetter Front: X. Shi, D. Thattil, G. Tinti, A. Bergamaschi, M. Ramilli, R. Dinapoli, D. Mezza

