Pile-up Noise Measurements in Tile Calorimeter of the ATLAS detector

Krystsina Petukhova

Center of High Energy and Particle Physics The Institute for Nuclear Problems Belarusian State University

January 18, 2017

Outlook

Pile-up is multiple p-p interactions at the same bunch crossing.

They affects the measurement of jet kinematics.

$$<\mu>=rac{\sigma_{\textit{inel}}\mathcal{L}}{f_{LHC}n_{\textit{bunch}}}$$

$$\mathcal{L} = 10^{34} cm^{-2} s^{-1} \ \sigma_{inel} = 80 mb$$

 $f_{LHC} = 11245 Hz \ n_{bunch} = 2496$

Importance:

- jets reconstruction algorithm uses topological clusters as input
- topological cluster is made of energetically significant cells

Purpose:

measurement of pile-up noise constants in the Tile calorimeter cells

ATLAS Experiment

Goals:

- more precise measurements of Standard Model parameters
- × search for new physics phenomena

Detectors:

- inner tracking detector
- electromagnetic and hadron calorimeters: LAr, Tile
- muon spectrometer

The ATLAS detector composition.

Tile Calorimeter

- ➡ a central hadronic calorimeter
- sampling detector: scintillating plastic "tiles" + layers of steel absorber
- *high-granularity* detector: 5182 cells, including special cells; 3 radial layers; 64 azimuthal modules; |η| < 1.7 coverage
- measures hadrons, jets
 kinematics, taus, missing E_T

The Tile calorimeter cells map.

The TileCal module structure.

p-p Collisions and Pile-up Noise

p-p interactions:

- hard: deep inelastic high-p_t parton-parton scattering
- soft: inelastic parton-parton interaction at low-pt range

pile-up affects measurements

In-time pile-up:

simultaneous p-p collisions

Out-of-time pile-up:

impact of the past/future collisions on the signal shape in the current bunch-crossing

The Total Noise Measurement

- data 2016
- MC 2016

Measurement:

- \Rightarrow the total noise σ_{tot} is the width of the cell energy distribution
- ➡ σ_{tot} has two components: electronics noise and pile-up noise
- $\Rightarrow \sigma_{elec}$ is measured with pedestal runs

The energy distributions in A14 Tile Calorimeter cell in data \circ and MC \blacksquare at $\mu = 18$ and $\mu = 32$.

Pile-up Noise Measurement

Total noise in a cell is a function of the average number of interactions $< \mu >$.

$$\sigma_{tot} = \sqrt{\sigma_{el}^2 + \sigma_{pile-up}^2 \frac{<\mu>}{k_{\mathcal{L}}}}$$

- applying fit to the "the total noise < μ >" with function, where k_L is a scaling factor
- extracting $\sigma_{pile-up}$

Pile-up dependence of the total noise in data \circ and MC $\blacksquare.$

Pile-up Noise Measurements in Tile Calorimeter of the ATLAS detector

Pile-up Noise Measurement

Measured Pile-up Noise Constants

Pile-up noise coefficients for the cells in data — and MC —.

Cell	Data	MC
A1	40.05	36.03
B13	30.60	25.76
D5	32.99	29.39
E4	229.41	201.31

Pile-up noise activity in the Tile calorimeter cells. The reference cell is the BC4. The highest pile-up is for A - cells, the lowest one is for D - cells.

ATLAS Preliminary

Summary

- ✓ The total noise in the Tile calorimeter cells is measured in p-p collision data at 13 TeV centre-of-mass energy collected in 2016, as well as in Monte Carlo.
- ✓ The pile-up noise depends on the cell position: the cells with highest pile-up level are in the A−layer and scintillator cells, the ones with low pile-up activity are in the D−layer.
- MC (Pythia 8) tuned to RUN-I well describes the soft component of the hard p-p collisions.
- The pile-up noise constants were calculated for all the Tile calorimeter cells and implemented into condition data base; they are used for by the collaboration throughout jet reconstruction in RUN-II.