VMs implementation for the Fermi masterclass in Bari

E. Bissaldi, F. de Palma, F. Gargano, F. Giannuzzi, F. Loparco, S. Nicotri

INFN Bari

The INFN Bari / UNIBA laaS Cloud Platform

The IaaS (Infrastructure as a Service) cloud platform **Cloud@ReCaS-Bari**, hosted in the **ReCaS Bari** data centre, provides computing resources following the cloud paradigm

Its features are:

- 1300 CPU core
- 5 TB of RAM
- 10 Gbit/s network
- Layer 2 isolated VLAN with NAT
- Evolved Firewall

- 180 TB of replica 3 storage
- Based on open source software (OpenStack)
- Modular
- Highly Available (HA) services

Cloud@ReCaS-Bari: physical architecture

https://www.recas-bari.it/index.php/en/

Virtual Machines

Computing resources are **VIRTUALISED** \rightarrow servers (Virtual Machines, VM) and storage are created and used only when needed.

Virtual Machines (VM) are similar to standard hardware servers:

They use familiar operating systems (OS), as Linux, Windows, etc. They can execute any software compatible with the OS

... but the hardware features (quantity of RAM, number of CPU cores, storage) are **VIRTUALISED**

VMs can be accessed through standard protocols (SSH, RDP, etc), as normal remote servers

Every student can login with his own credential in a browser running on every OS

∫ ○ Guacamole 0.9.9 × +		_ D ×
(<) () 🚱 https://90.147.170.81/#/	C Cerca	★ 🖻 🗢 🖡 🎓 🐵- 🎄 🚍

٢					
GUACAMOLE 0.9.9					
Username					
Password					
Entra					

After the login you have Ubuntu 16.4 running in a tab of your browser

Scientific Software installed

- Ds9
- Fv
- Public Science tools from FSSC (binary version)
- Ftools from heasarc (binary version)
- Astropy

Students can easily replicate the aperture photometry tutorial on the FSSC.

🖉 vm-gargano	$\times $ $+$							×
(i) 🗞 https://90.14	7.170.81/#/client/MTUAYwBteXNxbA==	C Q. Cerca	2		• 1	ABP	\diamond	≡
🤭 🔲 fv: Summary o	f lc_3C27 🌀 FSSC: Fermi Data » Dat 🧮 Select Plot Columns 👘 POW (Bui	ld 1.514) 🔄 Terminal - standaruser			1	1- ∉ 1	6 Mar, 1	6:24
fv ↑ □ ×	ata » Data Analysis » Analysis Threads » Fermi LAT Aperture Photometry - Chrom	• Terminal - standaruser@vm-gargano: ~				1		×
Open File	× T ×	POW (Build 1.514)	X tes	t_analy	ysis/	Ŷ	>	<h< th=""></h<>
Catalogs	//fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/aperture_photometry.html	File Edit Colors Tools Zoom Replot Help			View			
Run Ftool	rompt> ftcalc lc_3C279.fits lc_3C279_rate.fits RATE 'counts/exposure'		der	I	view	Tal	ole	
Display Device	rompt> ftcalc lc_3C279_rate.fits lc_3C279_rate_error.fits RATE_ERROR 'error/e	(X,X) Physical pixel:	der	Hist	Plot	A11	Select	
Hide All Windows File Summary Header Table Image Table	e is an example light curve for 3C 279 obtained from aperture photometry for the first 6 months of the mi lc_3C279_rate_error.fits(RATE_1-183)	(X,X) Image pixel: (X,X) Pixel value: X()	der itte	Hist	Plot	A11	Select	
Vector Table								
Clipboard	-	COUNTS (Counts)						
Help Quit	2e-06- 1e-06- 0- 2.4e+08 2.45e+08 2.45e+08 2.55e+08 2.55e+08 2.55e+08	60 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	inn i pli nar	name thot axis we or e elected to cun Clos	TOUS	raph	ot	
H 📀 📜	💵 🗐 🛜 📴 🖊 🧐 🥹 💁 😮))) ITA	17.24 16/03/20	017

Comparing results

- Each student will analyze an interval of few days of data. He/she will report his/her spectral result in a google spreadsheet.
- With all this information we will create a local light curve and a general light curve of the source.
- Each student will also produce and compare counts maps. At the end we will try to create an animated gif.

