

Limits on DM annihilation from an analysis of Galactic center in gamma rays

Dmitry Malyshev

Erlangen Center for Astroparticle Physics

Andrea Albert (Los Alamos), Elliott Bloom (SLAC), Eric Charles (SLAC), Anna Franckowiak (DESY, Zeuthen), Luigi Tibaldo (MPIK, Heidelberg)

on behalf of the Fermi LAT collaboration

Fermi LAT @ CERN March 29, 2017

• Is the DM annihilation signal present in the gamma-ray data?

Via Lactea II, Kuhlen et al, Science, 325 (2009)

Fermi Large Area Telescope (LAT), 8 years, Pass 8 data

GC excess emission

Dmitry Malyshev, GC in gamma rays

GC excess emission

- Possible interpretations:
 - DM annihilation, millisecond pulsars (e.g., Brand&Kocsis 2015), cosmic-ray sources near the GC (e.g., Carlson et al 2016)

Gamma-ray Space Telescope

Gamma-ray emission components

Samma-ray

- 100 MeV to 1 TeV in 27 logarithmic bins
- Gas correlated (π⁰ decay, bremsstrahlung) propagation and interaction of cosmic rays computed with GALPROP code
- Inverse Compton GALPROP
- Loop | (Wolleben, ApJ 664 (2007))
- Isotropic
- Fermi Bubbles (Fermi collaboration, ApJ 793 (2014))
- Point Sources 3FGL catalog
 - The cores of 200 bright PS are masked
- Sun / Moon (Fermi Science Tools)
- Excess template
 - Generalized NFW DM annihilation: γ = 1.25

 $\rho(r) \propto \frac{1}{\left(\frac{r}{r_{c}}\right)^{\gamma} \left(1 + \frac{r}{r}\right)^{3-\gamma}}$

boace Telescop

- All sky-fit
- Fit normalization in each energy bin for each template

- The spectrum uncertainty band comes from
 - Variations of GALPROP models and gas distribution
 - Additional sources of cosmic rays near the GC
 - Fermi bubbles at low latitudes
 - Properties of point sources near the GC

Gamma-ray Space Telescope

 There exist models that predicted a population of millisecond pulsars (MSPs) which can explain the GC excess

Brandt & Kocsis, ApJ 812 (2015)

- MSP are created from regular pulsars by accreting matter from a companion star
- They have a characteristic spin-down time of billions of years

- Since the GC excess signal is not significant relative to the modeling uncertainties, we conservatively put limits on DM annihilation
- For the limits we require that the DM annihilation signal not exceed the upper bound of the modeling uncertainty band for the GC excess flux

- Galactic center excess in gamma-rays exists
- The origin of the the excess is not clear yet
- Possible sources include
 - CR injection near the GC
 - Population of weak point sources, e.g., MSPs
 - DM annihilation
- Dark matter annihilation limits are derived
 - Comparable to the limits from dwarf galaxies

- Fermi Large Area Telescope gamma-ray space telescope
- Launched on June 11, 2008
 - 2.8 tons, 650 watts
 - 20 MeV to more than 300 GeV
 - 2.4 sr field of view
 - Better than 1° resolution above 1 GeV

Model (half scale) of the Fermi satellite Dmitry Malyshev, GC in gamma rays

Modeling of Galactic Diffuse Emission CR Sources

Cas A SNR Spitzer, Hubble, Chandra

Gas-correlated emission

15

interactions of CRs

Image credit: Nick Risinger. Graphics: Anna Franckowiak

Inverse Compton emission

Image credit: Nick Risinger.

Dmitry Malyshev, GC in gamma rays

- The residual near the GC is clearly visible
- Hard to say whether the morphology is spherical
- Similar fractional size as other residuals

- A source of CR electrons in the central molecular zone (CMZ) region can reduce the flux associated with gNFW template
 - Burst-like emission from the GC nucleus (Cholis et al. JCAP 12, 2015)
 - CR production correlated
 with molecular clouds in CMZ
 Gaggero et al JCAP 12, 2015
 Carlson et al PRL 117, 2016

- Hard to model distribution of gas towards the GC due to lack of Doppler shift information
 - Gas distribution is interpolated from |Lon| > 10°
- Use starlight (SL) extinction (Schultheis et al, A&A 566 (2014)) to find the distribution of dust along the line of sight towards the GC
 - Derive the distribution of gas assuming homogeneous mixing of dust and gas (not necessarily more accurate but can be used as an alternative)

Bubbles template from spectral components analysis (SCA)

- Assume that the bubbles have the same spectrum near the GC as at high latitudes ~E^{-1.9} between 1 and 10 GeV
- Cut on significance to obtain the bubbles template

 Comparison with the Fermi diffuse model paper:

Acero et al (Fermi LAT), ApJS 223 (2016)

- Fit the gNFW profile together with the all-sky bubbles determined with spectral components analysis
 - The high-energy tail of the GC excess is gone
 - Overall normalization is reduced

• Dark matter models fit the excess spectrum reasonably well

Ackerman et al. (Fermi LAT) PRL 115 (2015)

- MSPs pulsars spun up by accretion from a companion
 - Have a spectrum similar to the GC excess
 - Long lifetime (billions of years) there may be a population of MSPs in the Galactic bulge

- We cannot exclude neither DM nor astrophysical interpretation of the GC excess
- Is the GC excess signal significant relative to modeling uncertainties?
 - Independent estimate of uncertainties by scanning gNFW profile along the Galactic plane where we do not expect to see the DM annihilation signal
 - Compare the "DM-like" signals along the plane (relative to background) to the excess at the GC
- Even if the GC excess is not robust relative to modeling uncertainties, we can still put limits on DM annihilation from the observations of the Galactic center

Statistical analysis

• Wavelets

Bartels et al, PRL 116 (2016)

• Non-Poissonian templates

To estimate the modeling significance of the GC excess we compare the fractional excess at the GC to excesses along the Galactic plane away from the GC:

$$f = n_{sig} / b_{eff}$$

- Signal counts (n_{sig}):
 - We fit gNFW template in each energy bin independently
 - For a specific annihilation channel (e.g. $\chi\chi \rightarrow b\bar{b}$) and DM mass, we find the best fit to the gNFW template spectrum
 - Integrate over energy to get total n_{sig}
- Effective background (b_{eff}): background counts weighted with gNFW spatial profile and DM annihilation spectrum

Gamma-ray Space Telescope

- We calculate the ratio of DM-like signal to effective background for locations along the Galactic plane away from the GC
- We use 84% (one-sided "1 sigma" exclusion) as an estimate of modeling uncertainty

- Gamma-ray Space Telescope
- The observed fractional signal at the GC is at most two times larger than the modeling uncertainty

- eROSITA new X-ray all-sky survey
 - Modeling of the Fermi bubbles
 - Look for correlated features near the Galactic center
- Cherenkov Telescope Array (CTA)
 - Fermi bubbles near the GC are much brighter
 - Possible to see with Cherenkov telescopes?
- MeerKAT, SKA new radio telescopes
 - Search for individual pulsars in the halo around the GC
- e-ASTROGAM, AMEGO proposed low energy gamma-ray missions
 - Low energy gamma-ray measurements