

## Proton Analyses with the LAT

David Green (UMD/GSFC) Liz Hays (GSFC) Matt Meehan (UW-Madison) for the Fermi-LAT collaboration **CERN** Collaboration Meeting 03/29/2017



### **Current State of Cosmic-ray Protons**

- Cosmic-ray protons pose an interesting problem
- PAMELA and AMS-02
  observe a spectral break
  at 350 400 GeV
- Spectral break needs reconciling with our understanding of CR propagation, acceleration, or sources
- Additional measurements can help constrain secondary index

|                                    | 16000 | -     |
|------------------------------------|-------|-------|
| 1 <sup>-2</sup> Sr <sup>-1</sup> ] | 10000 | _     |
| <sup>-1</sup> S <sup>-1</sup> m    | 14000 |       |
| ) [GeV                             | 12000 |       |
| $E^{2.7} \times J(E$               | 10000 |       |
|                                    | 8000  | _<br> |



#### **Event Selection**

- The proton event selection is defined as:
  - Event has to trigger and pass onboard filters
  - Require event to have reconstructed track
  - Deposited energy > 20 GeV in CAL
  - Require a well reconstructed track using Pass 8 direction classifier
- Additional charge measurement using ACD and TKR
  - Efficiently removes Z > 1 cosmic rays





### Charge Measurement

- Cosmic-ray helium and nuclei pose large contamination source for this study
- We use the TKR and the ACD to independently measure the charge of incoming cosmic ray in the LAT
  - Define a polygon in ACD-charge vs TKRcharge to select on protons
  - Developed using flight data and GEANT4 proton/electron/nuclei simulations
- Find a residual contamination from CR helium and nuclei less than 1%
- CR electrons are under 4%, decreasing with energy
  - We background subtract any residual electron contamination





#### **Energy Measurement**

- We use the CAL to measure the energy of the proton induced shower
  - CAL is up to 2  $\lambda_l$  at off axis angles
- Develop event selection to select ideal event topologies
  - Does not fall within gaps between CAL modules
  - Select events with low 'backsplash' into TKR
  - Require > 0.5  $\lambda_{I}$  in the CAL
- We fit the profile of energy deposition to estimate the energy of the incident proton
  - Deposited energy primary from electromagnetic component of total shower



![](_page_4_Picture_10.jpeg)

### Signal Efficiency

- Primary measure of systematic uncertainty in acceptance
- Test stability of spectral measurement over different path-lengths through LAT
  - Probes shower development through different geometric cross-sections of LAT
- Find energy dependent quantiles of pathlength and produces cuts for 90% - 30% quantiles
- Produce different IRF for each quantile cut and reconstruct the spectrum
- The maximum variation of all spectra determines the uncertainty

![](_page_5_Figure_7.jpeg)

![](_page_5_Picture_9.jpeg)

### **Alternative GEANT4 Hadronic Models**

- Main measure of systematic uncertainties in energy deposition
- Produce dedicated proton simulations with alternative hadronic models in GEANT4 09-04-p1
  - Alternative models change shower development and deposited energy
- Tested 3 alternative models
  - Checked data/MC agreement from beam-test data
- Produce IRFs for each alternative models and unfold the spectrum
- Uncertainty is set from maximum variation of each alternative hadronic model

![](_page_6_Figure_10.jpeg)

![](_page_6_Picture_11.jpeg)

#### **Systematic Uncertainties**

- Acceptance uncertainties dominate at lower energies
- GEANT4 uncertainties dominate a higher energies
- This study is systematics dominated across entire energy range
- The uncertainty in the energy reconstruction is still being finalized
  - Therefore the our current estimated values are not shown

0.14

Systematic Uncertainty 80.0 8000 8000 8000 0.08 0.06

![](_page_7_Figure_9.jpeg)

![](_page_7_Picture_10.jpeg)

#### **Cosmic-ray Proton Spectrum**

- Using 7 years of LAT flight data, August 4, 2008 to July 30, 2015
- Extends energy of spacebased measurement to 9.5 TeV
- Red markers represent statistical uncertainty
- Red shaded region included systematic uncertainties
- Good agreement with other cosmic-ray measurements

10

![](_page_8_Figure_7.jpeg)

![](_page_8_Picture_8.jpeg)

## **Proton Anisotropy Study**

- This effort is being lead by Matt Meehan of University of Wisconsin
- Additional event selection for anisotropy measurement
  - Remove back-entering events
  - Reduce CRE contamination
- Data-driven method to create reference map
  - Detector response to an isotropic sky
- No ground-based experiment can constrain declination-dependence of dipole
  - Best constraints on full-sky anisotropy
  - Best constraints on declinationdependence

Amplitude 10-2 <u>Dipole</u> 10<sup>-3</sup>

 $10^{-4}$ 

#### **Courtesy of Matt Meehan**

![](_page_9_Figure_13.jpeg)

![](_page_9_Picture_14.jpeg)

- **AMS-02** 
  - Due to limited size of CAL, energy resolution is comparatively large but we can push to high energies due to large acceptance
- Analysis is systematics dominated across entire energy range
- We are finalizing the uncertainty in the reconstructed energy based off of work done by the CRE spectrum

The LAT proton spectrum has good agreement with other measurements such as

![](_page_10_Picture_6.jpeg)

# Backup Slides

#### The Fermi LAT

- The Large Area Telescope (LAT) is one of two instruments on the *Fermi* Gamma-ray Space Telescope
- The LAT is a pair conversion telescope

#### **Anticoincidence Detector (ACD)**

- 89 segmented plastic scintillating tiles
- Used for particle identification

#### Calorimeter (CAL)

- 1536 CsI(TI) crystals arranged in 8 layers
- Hodoscopic, image shower shape and profile
- Used for energy measurement

#### Tracker (TKR)

- 18 x-y layers of silicon strip detectors
- Used for direction reconstruction and particle identification

![](_page_12_Picture_13.jpeg)

![](_page_12_Picture_14.jpeg)

![](_page_12_Picture_15.jpeg)

#### **Anti-Coincidence Detector (ACD)**

- ACD's main purpose is to detect CRs
- Consists of 89 plastic scintillating tiles and 8 plastic scintillating ribbons that cover the TKR
  - Top tiles arranged in a 5 x 5 grid
  - Side tiles arranged in 5 x 3 grid with single large tile on the bottom row
- Signal in each tile read by two PMTs
  - Each PMT has a dual range, linear low range and non-linear high range
- Energy deposition in ACD described by ionization
  - Can use this to identify charge of incident particle

![](_page_13_Picture_9.jpeg)

#### arXiv:0902.1089v1

ACD Base Electronics Assembly

![](_page_13_Picture_12.jpeg)

![](_page_13_Picture_13.jpeg)

### The Tracker (TKR)

- 16 layers of high Z tungsten foil
  - Convert photon to e<sup>+</sup> e<sup>-</sup> pair
  - Last 4 conversion layers about 6 times thicker • than previous 12
- 18 layers of silicon strip detectors
  - Measure position of charged particle •
- TKR is 1.5 radiation lengths thick
- TKR is used to measure direction of incident cosmic-ray
  - Direction used to path-length correct signal and in reconstruction of several variables
- Additionally, energy deposited via ionization
  - Can use TKR as independent measure of CR charge

![](_page_14_Figure_11.jpeg)

![](_page_14_Picture_12.jpeg)

![](_page_14_Figure_14.jpeg)

![](_page_14_Figure_15.jpeg)

![](_page_14_Picture_16.jpeg)

#### Calorimeter (CAL)

- Use CAL to measure CR energy and direction
- Composed of 16 modules; each module has 96 CsI(TI) crystals
  - Arranged in 8 layers in alternating x-y directions
  - This allows for not only measuring energy deposition but also imaging of shower shape and direction
  - Shower shape can be used for particle identification
- 8.6 radiation lengths deep (0.5 nuclear interactions) at normal incidence
  - 2.5 nuclear interactions lengths for maximum off angle axis
- At higher energies shower leakage crystal saturation needs to be corrected and accounted

![](_page_15_Picture_9.jpeg)

Atwood 2009 arXiv:0902.1089v1

![](_page_15_Picture_11.jpeg)

#### Hadronic Showers in the LAT

 We can estimate how proton induced shower look like in the CAL

$$\left\langle \frac{dE(x)}{dx} \right\rangle = k \left( w \left[ \frac{x}{X_0} \right]^{a-1} e^{-bx/X_0} + (1-w) \left[ \frac{x}{\lambda_I} \right]^{a-1} e^{-bx/X_0} \right)$$

![](_page_16_Figure_3.jpeg)

![](_page_16_Figure_4.jpeg)

Same can be seen for radial profile, EM core with hadronic extension

$$\left\langle \frac{dE}{dr} \right\rangle = \frac{B_1}{r} e^{-r/\lambda_1} + \frac{B_2}{r} e^{-r^2/\lambda_2^2}$$

• EM component dominates early longitudinal profile and radial core

![](_page_16_Picture_8.jpeg)

### **Unfolding The Spectrum**

![](_page_17_Figure_1.jpeg)