Astroparticle Physics at ATLAS

Fermi-LAT collaboration meeting
ATLAS Astroparticle Forum Conveners
Valerio Ippolito
Harvard University
Antonio Boveia
Ohio State University

What is the ATLAS Astroparticle Forum

The ATLAS Astroparticle Forum, established in 2012, pools the expertise and interest of the ATLAS community on astroparticle physics related issues, across physics working groups.

Mandate of Astroparticle Forum:

- communication of ATLAS results to astrophysics/cosmology communities
- provide suggestions on production of results in complementary parameter space to astroparticle experiments
- coordination of astroparticle physics aspects of ATLAS analyses
- organisation of meetings for discussion of astroparticle topics

> For questions and future collaborations:
> atlas-phys-astro-forum-conveners@cern.ch

WHAT WE LOOK FOR IN ATLAS

WIMPs

- simplified DM models / effective theories
- supersymmetry

- long-lived particles
cosmic rays
- w/LHCf: ultra-high-energy showers
- multiplicity measurements

WIMPs: SIMPLIFIED MODEL APPROACH

how we extend the SM:

$\Delta m \gg q^{2}$: effective field theory (like in the case of direct detection) $\Delta m<\sim q^{2}$: use simplified models
(simplified Lagrangian w.r.t. UVcomplete models like SUSY)

LHC can probe the interaction in detail!
typical degrees of freedom:

- mediator mass and type (vector, axial-vector...)
- DM mass and type (Dirac fermion...)
- mediator couplings

OUR TOOLS

mono-X searches

- produce DM, tag event using a ISR SM particle
- highest sensitivity from mono-jet searches (as)
- X can also come from effective DM-X interaction vertex

di-X searches

- complementary approach: look for the mediator (resonance), sensitivity mostly independent on mDM
- di-jet searches (limited at low mass by trigger rate)
- di-lepton searches if mediator couples with charged leptons (excellent lepton resolution)

MONO-MANIA

Our Results

Long-Lived Particles

many SM extensions predict long-lived particles

- e.g. RPV supersymmetry
an experimental challenge

- high-luminosity searches (100 fb-1 and beyond)
- push trigger, tracking and jet
reconstruction at their limit (hits don't start where you expect them to!)

SUPERSYMMETRY

the ultimate multi-signature tool

- UV-complete model
if R -parity conserved, WIMP=LSP
- can combine EW neutralino searches in terms of DM parameters

- with more luminosity, exploit Higgsino scenarios (still need >2 years to beat LEP sensitivity $\sim 100 \mathrm{GeV}$!)
if R-parity is violated, meta-stable particle can be DM candidate
- gravitino searches

ATLAS SUSY Searches* - 95\% CL Lower Limits

Status: March 2017

Model

e, μ, τ, γ Jets $E_{T}^{\mathrm{miss}} \int \mathcal{L} d t\left[\mathrm{fb}^{-1}\right]$
Mass limit
$\sqrt{s}=7,8 \mathrm{TeV} \quad \sqrt{s}=13 \mathrm{TeV}$

ATLAS Preliminary

 $\sqrt{s}=7,8,13 \mathrm{TeV}$

Cosmic Ray Physics

use forward physics to better understand cosmic ray physics

- joint data analysis with LHCf (ATLAS gives track multiplicity in the central region, LHCf measures photons
- a few million events already collected, can be used to constrain diffractive models
- ATL-PHYS-PUB-2015-038

From Roberto Aloiso talk (2015 working group) at UHECR 2016
ATLAS is a cosmic-ray detector per-se!

- 100 m underground
- dedicated cosmic runs, trigger rate $\sim 100 \mathrm{~Hz}$, sensitive to muons with $p>\sim 5 \mathrm{GeV}$
- already have a few million events
- - so far used for performance so far (e.g. arXiv: 1011.6665) but could perform dedicated measurements as well (e.g. energy spectrum, cosmic charge ratio...). Ideas?

CONCLUSIONS

- Dark Matter search is a key ingredient in the ATLAS physics programme
* start with simplified extensions of the SM
* the rest of the BSM sector plays a crucial role
+ fully decoupled (mediator mass > TeV)?
* accessible at the LHC? (e.g. SUSY)
+ particle masses and coupling values determine exclusion contours and predicted values of $\sigma_{x \mathrm{~N}}$ and relic density
* access the $\mathrm{m}_{\mathrm{DM}} \sim$ few 100 GeV region in the next ~ 6 years
* current: mono-X and resonance searches, seek complementarity with DD/ID
* work in progress: Higgs-related and more exotic scenarios
- lots of potential for cosmic ray physics (with LHCf and using ATLAS as a cosmic detector!)

For questions and future collaborations:
atlas-phys-astro-forum-conveners@cern.ch

BACKUP

The Future: Challenges \& complementarity

expected luminosity

now:	$36 \mathrm{fb}^{-1}$
end of 2018:	$100 \mathrm{fb}^{-1}$
end of 2023:	$300 \mathrm{fb}^{-1}$
HL-LHC (~2035): $3000 \mathrm{fb}^{-1}$	

see also https://indico.cern.ch/event/539266
vector

V. Ippolito - DM@LHC - Feb 23rd, 2017

- balance between sensitivity to lowmomentum signals (e.g. spin-zero) and robustness at very high energy
- trigger \& detector performance are crucial!
- explore lower-cross-section extensions of the SM (SUSY, long-lived particles...)
axial-vector
 expected exclusion; LHC := "mono-jet"

Beyond the LHC

