

ASTROPARTICLE PHYSICS AT ATLAS

Fermi-LAT collaboration meeting

ATLAS Astroparticle Forum Conveners

Valerio Ippolito

Harvard University Antonio Boveia Ohio State University

WHAT IS THE ATLAS ASTROPARTICLE FORUM

The ATLAS Astroparticle Forum, established in 2012, pools the expertise and interest of the ATLAS community on astroparticle physics related issues, across physics working groups.

Mandate of Astroparticle Forum:

- communication of ATLAS results to astrophysics/cosmology communities
- provide suggestions on production of results in complementary parameter space to astroparticle experiments
- coordination of astroparticle physics aspects of ATLAS analyses
- organisation of meetings for discussion of astroparticle topics

For questions and future collaborations: atlas-phys-astro-forum-conveners@cern.ch

WIMPs

- simplified DM models / effective theories
- supersymmetry

exotic signatures

long-lived particles

cosmic rays

- w/LHCf: ultra-high-energy showers
- multiplicity measurements

WIMPS: SIMPLIFIED MODEL APPROACH

 $\Delta m >> q^{2}: effective field theory (like in the case of direct detection)$ $\Delta m <~ q^{2}: use simplified models (simplified Lagrangian w.r.t. UV-complete models like SUSY)$ \Box LHC can probe the interaction in detail! interaction in detail! typical degrees of freedom: mediator mass and type (vector, axial-vector...)

- DM mass and type (Dirac fermion...)
- mediator couplings

mono-X searches

- produce DM, tag event using a ISR SM particle
- highest sensitivity from mono-jet searches (α_s)
- X can also come from effective DM-X interaction vertex

di-X searches

- complementary approach: look for the mediator (resonance), sensitivity mostly independent on m_{DM}
- di-jet searches (limited at low mass by trigger rate)
- di-lepton searches if mediator couples with charged leptons (excellent lepton resolution)

Mono-mania

j, γ, W, Z, H q, g mediator									
>	gdm X			LHC	DD	ID			
background signal	final states with b/t- quarks or Higgs	SC	alar	low xsec, soft MET	:				
SM MET	bosons (mediator couples à la Yukawa with quark masses)	_	eudo calar	low xsec, soft MET	: '((velocity suppressed)	:)			
	final states with jets	ve	ector	large xsec	:) (spin independent)				
V Innolito Actroparticlo physi	T		xial- ector	large xsec	:((spin- dependent: experimental issue)	:)			

OUR RESULTS

 $\sigma_{\text{monojet}} \sim g_q g_{\text{DM}}$ $\sigma_{dijet} \sim g_q^2$

coupling assumption strongly influences sensitivity & compatibility with Ω_h^2 : disadvantage need to explore the parameter space (~2 more degrees of freedom other than masses) -> "reinterpretation"

advantage multisignature: could characterise a discovery and fully probe SM extensions

V. Ippolito - Astroparticle phy

LONG-LIVED PARTICLES

many SM extensions predict long-lived particles

e.g. RPV supersymmetry

an experimental challenge

- high-luminosity searches (100 fb⁻¹ and beyond)
- push trigger, tracking and jet reconstruction at their limit (hits don't start where you expect them to!)

	Model	Signature	∫L dt[fb	p ⁻¹]	Lifetime limit	t			Reference
	$\operatorname{RPV} \chi_1^0 \to ee\nu/e\mu\nu/\mu\mu\nu$	displaced lepton pair	20.3	χ_1^0 lifetime		7-740 mm		$m(ilde{g}) = 1.3$ TeV, $m(\chi_1^0) = 1.0$ TeV	1504.05162
SUSY	$\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime	6	-480 mm		$m(ilde{g}) = 1.1$ TeV, $m(\chi^0_1) = 1.0$ TeV	1504.05162
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	disappearing track	20.3	χ_1^{\pm} lifetime		0.22-3.	0 m	$m(\chi_1^{\pm}) = 450 \text{ GeV}$	1310.3675
	AMSB $pp \rightarrow \chi_1^* \chi_1^0, \chi_1^+ \chi_1^-$	large pixel dE/dx	18.4	χ_1^{\pm} lifetime			1.31-9.0 m	$m(\chi_1^{\pm})=450~{ m GeV}$	1506.05332
	GMSB	non-pointing or delayed γ	20.3	χ_1^0 lifetime	-	_	0.08-5.4 m	SPS8 with $\Lambda=200~\text{TeV}$	1409.5542
	Stealth SUSY	2 ID/MS vertices	19.5	Ŝ lifetime		-	-	0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	1504.03634
Higgs BR = 10%	Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$	2 low-EMF trackless jets	20.3	π _v lifetime		-	0.41-7.57 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
	Hidden Valley $H \to \pi_{\rm v} \pi_{\rm v}$	2 ID/MS vertices	19.5	π_v lifetime			0.31-25.4 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
	FRVZ $H \rightarrow 2\gamma_d + X$	2 e-, μ-, π-jets	20.3	γ _d lifetime	14-140 mm			$H \rightarrow 2\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$	1409.0746
Higg	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ _d lifetime	15-260 m	n		$H \rightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \text{ MeV}$	1409.0746
0,0	Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$	2 low-EMF trackless jets	20.3	π_v lifetime		_	0.6-5.0 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
Higgs BR =	Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$	2 ID/MS vertices	19.5	π_v lifetime			0.43-18.1 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ _d lifetime	28-160 mm			$H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$	1409.0746
lar	Hidden Valley $\Phi \to \pi_{\rm v} \pi_{\rm v}$	2 low-EMF trackless jets	20.3	π _v lifetime		-	0.29-7.9 m	$\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$	1501.04020
300 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	$\pi_{\rm v}$ lifetime		-	0.19-31.9	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
Other 900 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π _v lifetime	-	0.1	5-4.1 m	$\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$	1501.04020
	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime			0.11-18.3 m	$\sigma \times BR$ = 1 pb, $m(\pi_v) = 50 \text{ GeV}$	1504.03634
	${\rm HV}~Z'({\rm 1~TeV}) \to q_{\rm v}q_{\rm v}$	2 ID/MS vertices	20.3	π_v lifetime		_	0.1-4.9 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
	HV Z'(2 TeV) $\rightarrow q_v q_v$	2 ID/MS vertices	20.3	π_v lifetime			0.1-10.1 m	$\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$	1504.03634
				0.01	0.1	1	10	¹⁰⁰ cτ [m]	

*Only a selection of the available lifetime limits on new states is shown.

SUPERSYMMETRY

the ultimate multi-signature tool

• UV-complete model

if R-parity conserved, WIMP=LSP

- can combine EW neutralino searches in terms of DM parameters
- with more luminosity, exploit Higgsino scenarios (still need >2 years to beat LEP sensitivity ~ 100 GeV!)

if R-parity is violated, meta-stable particle can be DM candidate

• gravitino searches

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2017

Si	tatus: March 2017 Model	e, μ, τ, γ	/ Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 7, 8, 13 \text{ TeV}$ Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\ell}\ell/\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\ell\ell\ell/\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\ell\ell\ell\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ GMSB\ (\tilde{\ell}\ NLSP) \\ GGM\ (bino\ NLSP) \\ GGM\ (higgsino-bino\ NLSP) \\ GGM\ (higgsino\ NLSP) \\ Gravitino\ LSP \end{array}$	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 } \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-2 } \tau + 0\text{-1} \\ 2 \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 13.2 13.2 3.2 20.3 13.3 20.3 20.3		$\begin{array}{c c} \textbf{1.85 TeV} & \textbf{m}(\tilde{q}) = \textbf{m}(\tilde{g}) \\ \textbf{1.57 TeV} & \textbf{m}(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV}, \ \textbf{m}(1^{\text{st}} \ \text{gen.} \tilde{q}) = \textbf{m}(2^{\text{nd}} \ \text{gen.} \tilde{q}) \\ & \textbf{m}(\tilde{q}) - \textbf{m}(\tilde{\chi}_{1}^{0}) < 5 \ \text{GeV} \\ \textbf{2.02 TeV} & \textbf{m}(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ \textbf{2.01 TeV} & \textbf{m}(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ \textbf{2.01 TeV} & \textbf{m}(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ \textbf{m}(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ \textbf{m}(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ \textbf{m}(\tilde{\chi}_{1}^{0}) < 500 \ \text{GeV} \\ \textbf{2.0 TeV} & \textbf{m}(\tilde{\chi}_{1}^{0}) < 500 \ \text{GeV} \\ \textbf{2.0 TeV} \\ \textbf{1.6 TeV} & \textbf{m}(\tilde{\chi}_{1}^{0}) < 500 \ \text{GeV} \\ \textbf{2.0 TeV} \\ \textbf{1.65 TeV} & c\tau(\text{NLSP}) < 0.1 \ \text{mm} \\ \textbf{m}(\tilde{\chi}_{1}^{0}) < 950 \ \text{GeV}, \ c\tau(\text{NLSP}) < 0.1 \ \text{mm}, \ \mu < 0 \\ \textbf{m}(\tilde{\chi}_{1}^{0}) > 680 \ \text{GeV}, \ c\tau(\text{NLSP}) < 0.1 \ \text{mm}, \ \mu > 0 \\ \textbf{m}(\text{NLSP}) > 430 \ \text{GeV} \\ \textbf{m}(\tilde{G}) > 1.8 \times 10^{-4} \ \text{eV}, \ \textbf{m}(\tilde{g}) = \textbf{m}(\tilde{q}) = 1.5 \ \text{TeV} \\ \end{array}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{X}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{X}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{X}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	ğ ğ ğ ğ 1.3	1.92 TeV $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ 1.97 TeV $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ 7 TeV $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \text{ (natural GMSB)} \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \end{split}$	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 - 2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b		3.2 13.2 .7/13.3 20.3 3.2 20.3 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} &m(\tilde{\chi}_{1}^{0}) < 100 \text{GeV} \\ &m(\tilde{\chi}_{1}^{0}) < 150 \text{GeV}, m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{1}^{0}) + 100 \text{GeV} \\ &m(\tilde{\chi}_{1}^{+}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 1 \text{GeV} \\ &m(\tilde{r}_{1}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{GeV} \\ &m(\tilde{\chi}_{1}^{0}) > 150 \text{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} A \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \pi \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod} \\ \text{GGM (bino NLSP) weak prod} \end{array} $	$1 e, \mu + \gamma$	0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}) {=} 0 \ GeV \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 \ GeV, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 \ GeV, \ m(\tilde{\tau}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ \tilde{\ell} \ decoupled \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ \tilde{\ell} \ decoupled \\ & m(\tilde{\chi}_{2}^{0}) {=} m(\tilde{\chi}_{3}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{2}^{0}) {+} m(\tilde{\chi}_{1}^{0})) \\ & c\tau {<} 1 \ mm \\ & c\tau {<} 1 \ mm \end{split}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^- \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^- \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_2^-$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tilde{\tau}_1^-$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	č [±] dE/dx trk 0 trk dE/dx trk	- 1-5 jets - - - - μμ -	Yes Yes - - Yes - Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c } \tilde{\chi}_{1}^{\pm} & \textbf{430 GeV} \\ \tilde{\chi}_{1}^{\pm} & \textbf{495 GeV} \\ \tilde{g} & \textbf{850 GeV} \\ \tilde{g} & \textbf{850 GeV} \\ \tilde{g} & & & & \\ \tilde{g} & & & & \\ \tilde{g} & & & & \\ \tilde{\chi}_{1}^{0} & \textbf{537 GeV} \\ \tilde{\chi}_{1}^{0} & \textbf{537 GeV} \\ \tilde{\chi}_{1}^{0} & \textbf{1.0 TeV} \\ \tilde{\chi}_{1}^{0} & & & & \\ 1.0 \text{ TeV} \\ \tilde{\chi}_{1}^{0} & & & & \\ \end{array}$	$\begin{array}{l} m(\tilde{\chi}_{1}^{*})\text{-}m(\tilde{\chi}_{1}^{0})\text{-}160~MeV,~\tau(\tilde{\chi}_{1}^{*})\text{=}0.2~\mathrm{ns}\\ m(\tilde{\chi}_{1}^{*})\text{-}m(\tilde{\chi}_{1}^{0})\text{-}160~MeV,~\tau(\tilde{\chi}_{1}^{*})\text{<}15~\mathrm{ns}\\ m(\tilde{\chi}_{1}^{0})\text{=}100~GeV,~10~\mu\text{s}\text{<}\tau(\tilde{g})\text{<}1000~\mathrm{s}\\ \hline \mathbf{1.57~TeV}\\ \mathbf{1.57~TeV}\\ m(\tilde{\chi}_{1}^{0})\text{=}100~GeV,~\tau\text{>}10~\mathrm{ns}\\ 10\text{<}\mathrm{tan}\beta\text{<}50\\ 1\text{<}\tau(\tilde{\chi}_{1}^{0})\text{<}3~\mathrm{ns},~SPS8~model\\ 7\ {<}c\tau(\tilde{\chi}_{1}^{0})\text{<}740~\mathrm{mm},~m(\tilde{g})\text{=}1.3~\mathrm{TeV}\\ 6\ {<}c\tau(\tilde{\chi}_{1}^{0})\text{<}480~\mathrm{mm},~m(\tilde{g})\text{=}1.1~\mathrm{TeV}\\ \end{array}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v,$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau v_{e}, e\tau \tau$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{q}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qq q$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qq q$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$ \begin{array}{cccc} 2 \ e, \mu \ (\text{SS}) \\ \mu\mu\nu & 4 \ e, \mu \\ \nu_{\tau} & 3 \ e, \mu + \tau \\ & 0 & 4 \\ & 0 & 4 \\ & 1 \ e, \mu & 8 \end{array} $	- 0-3 <i>b</i> - 1-5 large- <i>R</i> je 1-5 large- <i></i>	ets - <i>b</i> - <i>b</i> -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 20.3	$\tilde{\chi}_{1}^{\pm}$ 1.14 TeV $\tilde{\chi}_{1}^{\pm}$ 450 GeV \tilde{g} 1.08 TeV	1.9 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$.45 TeV m(\tilde{q})=m(\tilde{g}), $c\tau_{LSP}<1$ mm / m($\tilde{\chi}_1^0$)>400GeV, $\lambda_{12k}\neq0$ ($k=1,2$) m($\tilde{\chi}_1^0$)>0.2×m($\tilde{\chi}_1^{\pm}$), $\lambda_{133}\neq0$ BR(t)=BR(b)=BR(c)=0% 1.55 TeV m($\tilde{\chi}_1^0$)=800 GeV 2.1 TeV m($\tilde{\chi}_1^0$)=1 TeV, $\lambda_{112}\neq0$ 1.65 TeV m($\tilde{t}_1 \rightarrow be/\mu$)>20%	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Other		0	2 <i>c</i>	Yes	20.3	õ 510 GeV	m $(ilde{\chi}_1^0)$ <200 GeV	1501.01325
phén	a selection of the availabl omena is shown. Many o lified models, c.f. refs. for	f the limits ar	e based o	n	^{or} 1	0 ⁻¹ 1	Mass scale [TeV]	

simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

COSMIC RAY PHYSICS

use forward physics to better understand cosmic ray physics

- joint data analysis with LHCf (ATLAS gives track multiplicity in the central region, LHCf measures photons
- a few million events already collected, can be used to constrain diffractive models
- ATL-PHYS-PUB-2015-038

ATLAS is a cosmic-ray detector per-se!

- 100 m underground
- dedicated cosmic runs, trigger rate ~ 100 Hz, sensitive to muons with p > ~5 GeV
- already have a few million events
- so far used for performance so far (e.g. arXiv: 1011.6665) but could perform dedicated measurements as well (e.g. energy spectrum, cosmic charge ratio...). Ideas?

CONCLUSIONS

- Dark Matter search is a key ingredient in the ATLAS physics programme
 - start with simplified extensions of the SM
 - the rest of the BSM sector plays a crucial role
 - fully decoupled (mediator mass > TeV)?
 - accessible at the LHC? (e.g. SUSY)

```
    nothing is as hard as
    looking for a black cat in a
    dark room, especially if
    there is no cat
```

- + particle masses and coupling values determine exclusion contours and predicted values of $\sigma_{\chi N}$ and relic density
- access the m_{DM} ~ few 100 GeV region in the next ~6 years
- current: mono-X and resonance searches, seek complementarity with DD/ID
- work in progress: Higgs-related and more exotic scenarios
- lots of potential for cosmic ray physics (with LHCf and using ATLAS as a cosmic detector!)

For questions and future collaborations: <u>atlas-phys-astro-forum-conveners@cern.ch</u>

THE FUTURE: CHALLENGES & COMPLEMENTARITY

- balance between sensitivity to lowmomentum signals (e.g. spin-zero) and robustness at very high energy
 - trigger & detector performance are crucial!
- explore lower-cross-section extensions of the SM (SUSY, long-lived particles...)

BEYOND THE LHC

