Fermi-LAT Collaboration Meeting at CERN, 27-31 March 2017

FERMI-LAT GRB OBSERVATIONS: WHAT HAVE WE LEARNED?

Soeb Razzaque University of Johannesburg South Africa

GRB population emitting high-energy (HE, \geq 100 MeV) γ rays

LAT GRB rate

LAT GRBs have higher than

>100 MeV fluence is ~10% of 10 keV – 1 MeV fluence

LAT & GBM fluences are correlated

x-axis is GBM 10 keV - 1 MeV fluence

LAT GRB redshift

Large fluence of LAT GRBs is not a distance effect

- No particular trend in redshift distribution other than average GRB redshift ~ 1-2
- LAT GRBs are not the closest ones
- Huge energy release

LAT GRB energetic

Up to $\approx 10^{55}$ erg in isotropic γ rays

LAT is sampling some of the most energetic GRBs

Perley et al. 2014

GRB central engine

Can newly-born magnetars power LAT GRBs?

Rotational energy of a maximally spinning neutron star

$$E_{\rm rot} \sim 3 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \left(\frac{R}{10 \text{ km}}\right)^2 \text{ ergs}$$

Vacuum/force-free electromagnetic spin-down power of a NS with surface (equatorial) dipole magnetic field (*Spitkovsky 2006*)

$$\dot{E}_{\rm FF} \approx \frac{4\pi^4 B_{\rm dip}^2 R^6}{P^4 c^3} \sim 10^{49} \left(\frac{B_{\rm dip}}{10^{15} \text{ G}}\right)^2 \left(\frac{P}{1 \text{ ms}}\right)^{-4} \left(\frac{R}{10 \text{ km}}\right)^6 \text{ ergs/s}$$

Jet beaming factor ~200 (~6 degree opening angle)

Maximum isotropic γ -ray power from magnetar engine ~ 10⁴⁹ – 10⁵¹ ergs/s

Peak luminosity (ergs/s) of some LAT GRBs:

6×10⁵³ (080916C), 4×10⁵³ (090510, 160625B), etc.

A magnetar engine does not work!

GRB prompt - afterglow emission and theoretical framework

Three features of prompt y ray emission

Long-term evolution: GRB afterglow

Prompt γ-ray emission is followed by longer wavelength emissions, lasting for much longer time scale

X-ray light curves from Swift of long and short GRBs

Prompt and afterglow are not often distinct

Gehrels et al. 2009

GRB fireball shock model

29 March 2017

Soeb Razzaque

Variability of prompt γ ray emission

Synchrotron model of prompt γ ray spectra

Most popular model for MeV γ

Synchrotron radiation by a population of shock-accelerated electrons

 γ spectrum below $E_{\gamma,b}$ from synchrotron theory

Some tension with data giving α < -2/3

Preferred by theory

Soeb Razzaque

Synchrotron model for broadband afterglow

- Fast (slow) cooling $\gamma_m > (<) \gamma_c$ or $v_m > (<) v_c$
- All break frequencies evolve with time as the *B* field and Γ do

Characteristics of HE emission detected by Fermi-LAT

Soeb Razzaque

Delayed onset of HE emission

Spectral variation

Energy spectra at early time – prompt phase

Additional component is present in both long and short bursts, dominates at GeV energies

GRB 090510 (short)

GRB 090926A (long)

top panels: time-integrated spectra, bottom panels: time-resolved spectra

Early time variability in HE emission

Evidence of fluctuating LAT emission in a few GRBs during prompt phase

Light curves fitted with rising+falling functions of time variability time is half width at half maximum

Yassine et al. 2017

Temporally extended HE emission

Delayed onset and additional HE emission component Prompt models

Inverse Compton for HE emission

- Low magnetization of the jet allows dominant IC emission
- If only a small fraction of the electrons is given the shock energy, they emit at HE

Bosnjak, Daigne & Dubus 2009

Soeb Razzaque

Soeb

22/32

Inverse Compton for HE emission

• IC emission at >1 GeV energies may appear delayed by a pulse width

 $\epsilon_{\rm B} = 5 \times 10^{-3}, \epsilon_{\rm e} = 1/3, \zeta = 2 \times 10^{-3} \text{ and } p = 2.5$

Bosnjak, Daigne & Dubus 2009

Photospheric + IC for HE emission

- Multicomponent blackbody proxy for thermal emission from jet photosphere
- IC of thermal photons in the photosphere HE emission

No delay for HE emission is expected!

23/32

Soeb Razzaque

Hadronic model for HE emission

Proton-synchrotron and $\gamma\gamma \rightarrow e^+e^-$ cascade synchrotron radiation

GRB 080916C

Razzaque, Dermer & Finke 2009

 10^{-5} GBM triggering range LAT range 10⁻⁵ $\rho_b = 17, \ k = 2.3$ $\zeta_B = 5, B' = 150 \, \text{kG}$ $\Gamma = 500, \ \Gamma_{rel} = 10$ - 8s. 4s. 2s. 0.5s. 0.1s. 0.03s. 0.01s 10^{-6} $\cdots > \tau_{\gamma\gamma} > 1$ $f_{\epsilon} [\operatorname{erg} \operatorname{cm}^{-2} s^{-1}]$ 10^{-6} Band-comp. 10^{-7} 10^{-7} (a)Esat. p Esat. 6 10^{-8} 10 $10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}$ 10^{4} E [GeV]

Photohadronic cascade and secondary synchrotron, $\pi^0 \rightarrow \gamma\gamma$

GRB 090902B

Asano, Meszaros & Guiriec 2009

Total energy needs to be ~100 times or larger than observed in γ

Delayed onset, additional component and extended HE emission Afterglow models Soeb Razzaque

Broad-band afterglow of GRB 130427A

Afterglow model for HE emission

A highly relativistic jet can produce very early afterglow: ~ few seconds

$$t_{\rm dec} \sim 2 \left(1+z\right) \left(\frac{E_{\rm kin,iso}}{10^{55} {\rm ~ergs}}\right)^{1/3} \left(\frac{n_{\rm ISM}}{1 {\rm ~cm}^{-3}}\right)^{-1/3} \left(\frac{\Gamma}{1000}\right)^{-8/3} {\rm ~s}$$

Synchrotron radiation from the very early afterglow

→ origin of >100 MeV emission in LAT (*Kumar & Barniol-Duran 2009*)

- Explains time delay with keV-MeV emission and longevity of LAT emission
- Additional spectra component detected at early time
- Baryon-loading/entropy:

$$\eta = \frac{L_{\rm k,iso}}{4\pi R^2 c n m_p}$$

Ratio of energy to mass outflow rates

• Critical radiation entropy:

Coupling between material and radiation

$$\eta_{\rm rad} = \left(\frac{L_{\rm k,iso}\sigma_T}{4\pi R_0 m_p c^3}\right)^{1/4} \approx 1800 \left(\frac{L_{55}}{R_7}\right)^{1/4}$$

. . .

Coasting baryonic fireball Lorentz factor $\Gamma \leq \eta_{rad}$

Leptonic e^+e^- fireball or magnetic fireball can have even higher Γ

28/32

Afterglow model for HE emission

Evolution of LAT emission compared with electron-synchrotron radiation from a **radiative** fireball Fit to multiwavelength (optical-GeV) data with **e- and p-synchrotron radiation** from an adiabatic fireball

Afterglow of GRB 110731A

First long GRB with multi-wavelength coverage from trigger to afterglow

All light curves peak at ~T0+5.5 s \rightarrow Evidence for afterglow onset

29 March 2017

GRB 110731A broadband SED

• Temporally extended HE emission is afterglow

Soeb Razzague

• Very early afterglow onset time < T₀+8 s

Detailed modeling

SSC emission in afterglow

Expected for blast-wave with very weak magnetic field \rightarrow Not detected yet

 $\epsilon_e = 0.5 \ \epsilon_B = 10^{-4}$

Dermer, Chiang & Mitman 2000

32/32

Conclusions

- Fermi-LAT GRBs are high in γ ray fluence
 - LAT fluence appears to be correlated with the GBM fluence
 - Favors an afterglow interpretation of HE emission
- Fermi-LAT GRBs are among the most energetic bursts
 - High luminosity of many of those cannot be explained with magnetar model
 - A black hole engine is favored
- New and interesting features in high energy (≥100 MeV) emission
 - Delayed onset, additional spectral components, extended emission
- Models of high-energy emission
 - Prompt phase: inverse-Compton, proton-synchrotron, photo-hadronic
 - Cannot explain extended emission, smooth feature
 - Afterglow phase: synchrotron radiation
 - Currently favored