

A Brief Overview, and Recent Developments in the Theory of High-Energy Emission from the Crab Nebula

Fermi Collaboration Meeting CERN, 30 March 2017

John J. Kroon Space Science Division Naval Research Laboratory Collaborators: Justin D. Finke (NRL) Peter A. Becker (GMU) Charles D. Dermer (NRL)

1

The Crab Nebula

Pulsar Wind Nebula

Rees & Gunn (1974) Wind pressure=Nebula pressure

$$\frac{\dot{L}}{4\pi R_{\rm S}^2} \approx \frac{\tau \dot{L}}{\frac{4}{3}\pi R_{\rm N}^3}$$

т=963 yrs R_N=2 pc → R_s≈3*10¹⁷ cm

Pulsar Wind Nebula

MHD model of pulsar wind (Kennel & Coroniti 1984)

 $\sigma = \frac{\text{Magnetic energy density}}{\text{Particle energy density}} = \frac{B_1^2}{4\pi n_1 u_1 \gamma_1 mc^2}$

$$L = 4\pi n_1 \gamma_1 u_1 m c^3 r_s^2 (1 + \sigma)$$

$$B_1 = \left[\frac{L}{cr_s^2}\frac{\sigma}{(1+\sigma)}\right]^{1/2}$$

- Model parameters:
 - 1. Pulsar luminosit
 - 2. Shock radius, RT.
 - 3. Nebula radius,
 - 4. Magnetization p
 - 5. Preshock wind t
 - 6. Particle spectra

Power-law shock accord Order Fern

RN

V<<C

R_s

V~C

)

Shock Acceleration

- Shock acceleration (Fermi 1949, Blandford & Ostriker 1978) at termination shock → quiescent spectrum.
 - Mediated by MHD scattering centers.
 - Toroidal magnetic field (parallel to TS), reduces likelihood of particles being recycled back upstream.
 - Shock-regulated escape": lowest energy particles are more likely to advect downstream.

Shock-Regulated Escape (SRE)

Gamma-Ray Flares from Crab Nebula

- Rapid variability observed in Fermi-LAT gamma-ray flares.
- Gamma-ray flares observed in 2007, 2009, 2010, 2011, 2013.

Flares were unexpected!

Peak $L=4*10^{36}$ ergs/s Spin $L=5*10^{38}$ ergs/s Total $E=3*10^{42}$ ergs

Broadband SED and Flare Spectra

Challenges of Theory

 How do the particles end up with most of the magnetic energy downstream of the TS?

Synchrotron "burn-off" limit? (radiation reaction limited emission)

$$\epsilon_{\rm pk}(\gamma) = \xi \frac{B}{B_{\rm crit}} \, \gamma^2 m_e c^2 \qquad \gamma_{\rm MHD} = \sqrt{\frac{6\pi q}{B\,\zeta\,\sigma_{\rm T}}} = 8.25 \times 10^9 \, \left(\frac{B}{200\,\mu{\rm G}}\right)^{-1/2} \, \zeta^{-1/2}$$

 γ_{MHD} found by equating maximum MHD acceleration rate with synchrotron loss rate.

$$\epsilon_{\rm _{MHD}} \equiv \epsilon_{\rm pk}(\gamma_{\rm _{MHD}}) = \frac{6\pi\,\xi q\,m_e c^2}{B_{\rm crit}\zeta\,\sigma_{\rm T}} = 158\,\,{\rm MeV}\,\xi\,\,\zeta^{-1}$$

>3 GeV photons
observed in flares!

** ς and ξ are order unity model parameters from Kroon et al. (2016)**

The Fermi Era: Powerful γ-ray Flares

- Classical Diffusive Shock Acceleration (DSA) can't explain the energetic/temporal features of the flares, but works well for long term quiescent state emission.
- Magnetic reconnection can explain it (non-ideal MHD).

$$\epsilon_{\max} = 158 \text{ MeV} \left(\xi + \frac{E}{B} + \frac{D_0}{D_0^{\max}} \right)$$

E/B>1, boosts E_{max} above burnoff limit.

Fermi observed >3 GeV emission from some of the flares.

(Peak around 400 MeV)

Abdo et al. (2011)

Feb. 2009 Sept. 2010

Reconnection Simulations

PIC simulations of shock-driven reconnection, Cerutti et al. (2013).

- Shock-driven magnetic reconnection provides a powerful mechanism to explain the flares.
- BUT simulation generated spectra don't reproduce the observed spectra...

Cerutti, Werner, Uzdensky, & Begelman (2014)

 Reconnection simulations demonstrate efficient electrostatic acceleration, but the resulting spectra do not fit the observational data very well.

Buehler & Blandford (2014)

New Theoretical Model (Kroon et al. 2016)

$$\langle \dot{p} \rangle_{\text{gain}} = qE + qB\rho \zeta^{-1} = A_0 m_e c$$

$$\text{Momentum}$$

$$D(p) = D_0 m_e c p$$

$$\langle \dot{p} \rangle_{\text{loss}} = -\frac{B_0}{m_e c} p^2$$

$$\text{Synch. losses}$$

$$Af$$

 Analytic models are more useful than simulations for fitting data→computational time, variation of parameters. S

Analytical Solution

• Steady-state solution for the electron number distribution:

$$\mathcal{N}_{\rm G}(x,x_0) = \frac{\dot{N}_0 \Gamma(\mu - \kappa + 1/2)}{\tilde{B} D_0 \Gamma(1 + 2\mu) \, x_0^2} \left(\frac{x}{x_0}\right)^{\tilde{A}/2} e^{-\tilde{B}(x^2 - x_0^2)/4} M_{\kappa,\mu} \left(\frac{\tilde{B} x_{\min}^2}{2}\right) W_{\kappa,\mu} \left(\frac{\tilde{B} x_{\max}^2}{2}\right)$$

 With the analytic solution, we can perform an integral convolution with the synchrotron emissivity function. The synchrotron flux at the detector is given by

$$\mathscr{F}_{\nu}(\nu) = \frac{1}{4\pi D^2} \int_1^\infty N_{\rm g}(\gamma,\gamma_0) P_{\nu}(\nu,\gamma) d\gamma \propto \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$$

where *D* is the distance to the source.

 How does this analytic model compare with the observed flare spectra?...

Flare Spectral Fits (Kroon et al. 2016)

 These are the most successful theoretical calculations of the Crab nebula flare spectra to date!

Afterglow Spectra for April 2011 Flare

Conclusions

Prior Models

- DSA dominates acceleration during quiescence.
- MHD flow transport is more efficient than spatial diffusion.
- Kroon et al. (2016) Model
 - Electrostatic acceleration via shock-driven reconnection provides most of the power for the flares.
 - Shock acceleration and stochastic MHD acceleration are also important for determining the spectral shapes.
 - The NRL/GMU collaboration is currently developing a timedependent model for the gamma-ray flares, and the preliminary results are very interesting!
- Fermi has discovered new mysterious acceleration processes that have challenged our understanding of HE astrophysics and led to new insights!

Additional slide(s) follow.

Data Table

Flare	$\sigma_{ m mag}$	$ ilde{A}_{ m sh}$	\tilde{A}_{elec}	Ĩ	Ũ	<i>m</i> _	$D_0(s^{-1})$	$\frac{E}{B}$
2007 Sep	0.0802	3.740	32.26	5.50×10^{-19}	10.0	-0.261	94.00	0.862
2009 Feb	0.0401	7.480	17.52	1.10×10^{-18}	45.0	-1.575	47.00	0.234
2010 Sep	0.0980	3.060	32.94	4.50×10^{-19}	53.0	-1.347	114.9	1.075
2011 Apr	0.1026	2.925	46.80	4.30×10^{-19}	15.0	-0.288	120.2	1.600
2013 Mar	0.6784	0.440	13.56	6.50×10^{-20}	40.0	-2.198	795.4	3.064

• Significant electrostatic acceleration in April 2011 and March 2013 flares, E/B~2-3.

- The sigma parameter, σ <1, shows that model is consistent with MHD physics.
- This process efficiently converts Poynting flux into relativistic particle energy, and then into gamma-rays.

