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What is the “direct photon puzzle”?
<<< Let me try a simple definition >>>

Background information:
1) “Direct photons”=Photons not produced by a hadronic 
decays
2) Thermal photons (radiated by the quark-gluon plasma) are 
thought to dominate direct photon measurements

π0→γγ             η0→γγ            .. .

Puzzle
Calculations struggle to explain all direct photon 
measurements (spectra and vn) at the same time
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Overview
➢ Why direct photons (and why heavy ion 
collisions)?

➢ Sources of photons, with emphasis on 
prompt photons

➢ Understanding thermal photons
➢ Where do we go from here?
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Why direct photons (and why 
heavy ion collisions)?
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Why study heavy ion collisions?

(Picture credit: J. Bernhard, Duke)

Time
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The “quark-gluon plasma”

The “quark-gluon plasma” (QGP)

Study many-body properties of deconfined nuclear matter 
(quantum chromodynamics):
e.g. shear and bulk viscosities
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How to study the plasma?

The “quark-gluon plasma” (QGP)

How do we study the properties of the QGP?
Photons/dileptons, soft hadron observables (pT spectra, vn), 

jet energy loss, heavy quarks, ... 
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How to study the plasma?

How do we study the properties of the QGP?
Photons/dileptons,  soft hadron observables (pT spectra, vn), 

jet energy loss, heavy quarks, ... 
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Sources of photons in heavy 
ion collisions



Jean-François Paquet (Stony Brook) 10

Sources of photons
Prompt 
photons “Thermal” photons

Decay photons
  (e.g.            )

Late stage emission
(e.g.              )

Pre-equilibrium emission

π0→γ γ

Also: photons from jet-plasma interactions, B-field, ...

πρ→π γ
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Direct photons
Prompt 
photons “Thermal” photons

Decay photons
  (e.g.            )

Late stage emission
(e.g.              )

Pre-equilibrium emission

π0→γ γ

Also: photons from jet-plasma interactions, B-field, ...

πρ→π γ
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Prompt photons: in p+p collisions

Think about proton-
proton collisions

A parton (quark/gluon) from each proton interact and produce a 
photon (or produce a parton that then fragments into a photon)

Parton distribution 
function

Parton-parton 
cross-section

Photon 
fragmentation 

function
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Prompt photons: A+A, high pT

At high pT: binary scaling of 
prompt photons

Can include small 
corrections from nuclear 

parton distribution function

But there’s more: 
parton energy loss
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Prompt photon channels

Two distinct contributions: “isolated” & fragmentation

By “isolated”, I mean e.g. 
Compton scattering
gluon+quark→gluon+γ

By fragmentation, I mean e.g.
gluon+quark→gluon+quark

and g is produced during 
hadronisation
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Prompt photon & energy loss

Two distinct contributions: “isolated” & fragmentation

By “isolated”, I mean e.g. 
Compton scattering
gluon+quark→gluon+γ

By fragmentation, I mean e.g.
gluon+quark→gluon+quark

and g is produced during 
hadronisation

Not affected by energy loss

Affected by energy loss

(Also, related to jet-plasma photons)
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Prompt photon channels

Two distinct contributions: “isolated” & fragmentation

By “isolated”, I mean e.g. 
Compton scattering
gluon+quark→gluon+γ

gluon+quark→gluon+quark

and g is produced during 
hadronisation

Dominate at high pT

Dominate at low pT

By fragmentation, I mean e.g.
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Prompt photons: why do we care?

Why so much discussion about prompt photons?

Because they are the reference

p+p

d+Au

RHIC
In proton-proton and 

proton-nucleus collisions, 
prompt photons dominate 

at all pT>~1 GeV
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Prompt photons: A+A

But in nucleus-nucleus collisions, do we know the reference?

Prompt photons describe well 
the high pT data in A+A

Prompt photons underestimate 
the low pT data in A+A:
direct photon excess!

but...
jet energy loss and jet-medium 

photons not accounted for
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Prompt photons: bottom line

Prompt photons can be a tricky 
reference

unless plasma effects are
taken into account

(however: model bias)

A photon excess is observed, 
but remember how this excess 

is defined
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Thermal photons
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Reminder: sources of photons
Prompt 
photons “Thermal” photons

Decay photons
  (e.g.            )

Late stage emission
(e.g.              )

Pre-equilibrium emission

π0→γ γ

Also: photons from jet-plasma interactions, B-field, ...

πρ→π γ

Decay photons
  (e.g.            )π

0
→γ γ
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Thermal photons & temperature profile
Temperature (GeV)

Plasma seems to reach & maintain 
local equilibrium:

A local temperature can be 
defined

Evolution of the temperature & 
flow velocity given by 

relativistic hydrodynamics

LHC 
central
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Initial temperature
Temperature (GeV) Simple answer:

Real answer:
Not very well defined. 

Depends on initial time & 
averaging procedure

 (GeV)
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Thermal photons: rate & plasma profile

Thermal emission rate:
Given local plasma properties 

(e.g. temperature, flow 
velocity), how much photons 

are radiated?
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Spacetime profile of plasma: hydro

Bulk pressure Shear stress
 tensor

Energy density
(related to temperature through 

equation of state)

Flow

Hydrodynamic model of plasma:
➢ Initial conditions
➢ Hydrodynamic equations
➢ Production of hadrons from hydro

(Cooper-Frye + afterburner)
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Fix hydro with hadrons

Number 
of 

hadrons?

Average energy of hadrons? Azimuthal distribution?

Hydrodynamic model of plasma:
➢ Initial conditions
➢ Hydrodynamic equations
➢ Production of hadrons from hydro

(Cooper-Frye + afterburner)
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Photon emission rate

 T

How much does a plasma of nuclear matter at 
temperature T radiate?

Gas of hadrons: ~100 MeV

Deconfinement: ~160 MeV

Max T at RHIC: ~400 MeV

Max T at LHC: ~600 MeV:

Toward asymptotic QGP

Emission rate
Effective hadronic 

models

Perturbative QCD

AdS/CFT and other 
holography

Effective “QCD” models

Lattice (limited)
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Electromagnetic emission rate

 T

Gas of hadrons: ~100 MeV

Deconfinement: ~160 MeV

Max T at RHIC: ~400 MeV

Max T at LHC: ~600 MeV:

Emission rate
Effective hadronic models

Perturbative QCD

AdS/CFT and other 
holography

Effective “QCD” models

Refs: Texas A&M (Rapp et al) and McGill (Gale et al) groups;
         Stony Brook group (Dusling & Zahed) and others

Refs: Arnold, Moore, Yaffe (AMY); Ghiglieri, Teaney; Laine, ...

Refs: Caron-Huot et al (AdS/CFT); Finazzo and Rougemont 
(bottom-up holography), ...

Toward asymptotic QGP

How much does a plasma of nuclear matter at 
temperature T radiate?
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Thermal photons: bottom line

Thermal emission rate:
Given local plasma properties 

(e.g. temperature, flow 
velocity), how much photons 

are radiated?
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Thermal photons
Thermal photons from different 

temperature ranges:

Not just temperature!
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Thermal photons vs flow

With flow Without flow

Number of photons stays the same, but 
the flow changes (boosts) the 

momentum distribution
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Thermal photons: pT ranges

Low pT photons are from low 
temperatures (late times)
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Direct photon spectra vs data

RHIC 

Total

LHC

Total

Agreement with data?
(better at LHC than RHIC)

Beware: prompt photons
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Momentum anisotropy: v2

First measurement of direct photon v2 (PHENIX collaboration, 2011)

Direct photon v2 as large 
as pion v2

Reason 2:  How v2 develops

Reason 1: Prompt photons

Why is this surprising?
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Summing different sources of v2’s

but what if there are two sources of direct photons?
(say thermal and prompt)

v2
direct γ

( pT )=
[spectra of thermal γ  at pT ]×v2

thermal
( pT )+[spectra of prompt γ  at pT ]×v2

prompt
(pT )

[spectra of thermal γ  at pT ]+[spectra of prompt γ  at pT ]

v2 is a weighted average

Since prompt photons are expected to have a small v2, 
they dilute (decrease) the thermal photon v2
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How is v2 of thermal photons developed?

Spatial anisotropy leads to anisotropic expansion 
(different pressure gradients in x and y)

Anisotropic flow velocities boosts particles by different 
amount, which lead to a momentum anisotropy (vn)
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Thermal photon v2 and time

Early times: v2 much smaller than pion’s
Late times: v2 similar pion’s
Intermediate times: “interpolate” between two limits

Overall result: expect thermal photon v2 smaller than pion
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Direct photon v2: qualitative expectations

Thermal photon v2 smaller than the 
pion one because of early time 

thermal photon emission w/ low v2 

Prompt photons should reduce the 
direct photon v2 even more

(assuming significant spectra and 
small v2)

Bottom line: expect direct photon 
v2 smaller than pion
(but depends on pT!)
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Direct photon v2 vs data

RHIC 

LHCTotal Total

Low pT dominated by late times thermal photons
High pT smaller due to early times thermal photons and 

prompt photons
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Progress that improved agreement w/ data

 

 
T

Emission rate
Effective hadronic 

models

Perturbative QCD

 T

Better initial state 
(fluctuations, initial flow); 

more realistic EOS

More complete low 
temperature photon 

emission rate
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Where do we go from here?
Still tension with data (“photon puzzle”), but lots of progress in 

understanding thermal photons over the past years

  Pre-equilibrium emission?
  Late stage emission?
  Jet-plasma photons & 
fragmentation photons 
energy loss
  Other sources?

Future improvement

Also, future improvements on thermal photons coming from 
improved hydrodynamics description and better-constrained 

thermal photon emission rates?
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From experimental side?
- Trend of photon vn at low pT (does it go to 0?) 

   and high pT (how fast does it decrease?)
- Integrated observables? 
  e.g. multiplicity, integrated v2?
- Low pT isolated photons? 
  Or use pT~4-10 GeV at LHC (2.76 TeV) 
  to better understand fragmentation 
  photons?
- Centrality/center-of-mass-energy/
  system-size dependence? 
- Low pT photons in p+p?  
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Questions?
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Back-up slides



Jean-François Paquet (Stony Brook) 45

 

Photon production in small 
systems
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Thermal photons in small systems: RpA

(Ref.: Shen, Paquet, Denicol, Jeon & Gale, arXiv:1609.02590)

Factor of ~2-3 
enhancement at low pT 
for central small 
systems

Enhancement ~1.5 at 
minimum bias

Theory vs data:
Need good constraints 
on low pT photons w/ 
cold nuclear effects



Jean-François Paquet (Stony Brook) 47

Thermal photons in small systems: v2

v2~2% at the RHIC ({p,d,He}+Au)

Predictions for direct photon v2 at RHIC and LHC

(Ref.: Shen, Paquet, Denicol, Jeon & Gale, arXiv:1609.02590)

v2~4% at the LHC

Eventually: Additional tool to study collectivity(?) in 
small systems
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Viscosity & thermal photons
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Viscous corrections to rate

k
d3

Γγ

d k
=k

d3
Γγ
ideal

d k
+π

μ νKμK νdΓγ
viscous , shear

+ΠdΓγ
viscous ,bulk
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Viscosity and emission rate

Viscous hydro = some deviation from local thermal equilibrium
f(p)=”Fermi-Dirac”/“Bose-Einstein” + df(p)

df(p) is related to the viscosity (shear and bulk) of the plasma

Medium evolution: hydrodynamics

Ideal hydro = local thermal equilibrium
f(p)=”Fermi-Dirac” (quark, baryons)

   or    “Bose-Einstein” (gluon, mesons)

Deviation from equilibrium = correction to EM probe rate

k
d3

Γ
γ/γ*

d k
=k

d3
Γ

γ/γ*

ideal

d k
+π

μ νKμK νdΓ
γ/γ*

viscous , shear
+ΠdΓ

γ/γ*

viscous ,bulk

Refs: Dusling, NPA (2010); Shen, Paquet, Heinz & Gale, PRC (2015) 
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Effect on photons of viscous rate correction

Effect on photon spectra and v2?

Spectra: small effect

v2: decrease at high pT

(consistent with effect on hadrons)

k
d3

Γγ

d k
=k

d3
Γγ
ideal

d k
+π

μ νKμK νdΓγ
viscous , shear

+ΠdΓγ
viscous ,bulk
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Summary: “thermal” EM probes

k
d3

Γ
γ/ γ

*

d k
=k

d3
Γ

γ/γ
*

ideal

d k

 
T

Emission rate
Effective hadronic 

models

Perturbative QCD

 +π
μνKμK νdΓ

γ/ γ*

viscous , shear

 +ΠdΓ
γ/ γ

*

viscous , bulk

 T
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Prompt photons
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Prompt and thermal photons
Prompt photons

Thermal photons
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Prompt photon reference?
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Prompt photons
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Prompt photons in vacuum

(Figure credits: Stankus, ARNPS 2005)

Fragmentation g

“Isolated” photons

Note: At LHC, fragmentation photons 
increasingly dominant at low pT

Perturbative 
QCD calc.
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Prompt photons in medium

(Figure credits: Stankus, ARNPS 2005)

“Isolated” photons

Fragmentation photon 
energy loss and jet-

medium photons

Parton energy loss = 
Final parton less energetic = 
Less photons from fragmentation
& positive v2

Parton energy loss = 
Medium-induced photon emission= 
More photons from final showering
& negative v2
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Jet-medium photon v2

Small negative v2 of  jet-medium 
photons from BAMPS

(v2~0.5-1% in 20-40% centrality)

Quantitatively similar to 
Turbide et al (2008)

(Ref.: Turbide, Gale, Frodermann & Heinz, PRC, 2008)

v 2g
v 2g

Jet-medium v2

Frag
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Prompt photons in medium

(Prompt w/ e-loss and jet-medium calculations from 
Turbide, Gale, Frodermann & Heinz, PRC, 2008)

“Isolated” photons

Fragmentation photon 
energy loss 

and 
jet-medium photons

Also: can this be investigated with 
~low pT photons with isolated cuts?
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Thermal photons
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Evaluating the EM emission rate

QCD plasma at low temperature: effective hadronic models

Example: Turbide, Rapp and Gale (2003)
Photon production of a gas of (p, K, r, K*, a1) mesons

Evaluated from effective 
Lagrangian fitted to 

hadronic data
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Thermal photon emission rate

Temperature very hot (QGP)less hot (hadronic D.O.F.)

Effective 
Lagrangian

Perturbative 
expansion in a

s

(Switch at 180 MeV)

Texas A&M/McGill 
(Turbide, Rapp, 
Gale et al)

QGP LO (Arnold, 
Moore, Yaffe. 

2002)
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Perturbative rate at LO and NLO
(Ref.: Ghiglieri, Hong, Kurkela, Lu, 

Moore & Teaney, JHEP, 2013) NLO (gs
3) correction to 

photon rate is small

(Unlike for e.g. heavy quark 
energy loss and shear 

viscosity)

NLO=”LO”+”collinear (coll)”+”soft”+”semi-collinear (sc)”
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Perturbative rate vs lattice

(Ref.: Ghiglieri, Kaczmarek, Laine & Meyer, PRD, 2016)

Perturbative photon rates 
remarkably consistent with 
lattice results around T~Tc

+

Lines=NLO pQCD

(note: quarks are quenched in 
both the lattice and pQCD 

calculations)

Proportional to 
photon rate
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Other calculations at T~200-400 MeV

T=200 MeV T=400 MeV

Semi-QGP: Mean field with suppressed Polyakov loop
[Gale et al, PRL, 2015; Hidaka, Lin, Pisarski & Satow, JHEP, 2015]
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Effect of suppressed QGP rate

No viscous 
corrections

Spectra suppressed Small effect on v2

(counterbalance of thermal 
and prompt photons)
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Hydrodynamics flow and boost

Thermal rate is (almost always) evaluated in rest frame

Rate in other frames? 
Just boost (Lorentz transform):

k
d3

Γ

d k
(k ,u)=k

d3
Γ

d k
(k=K⋅u ,u=0)

Hydro flow velocity
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Centrality dependence



Jean-François Paquet (Stony Brook) 70

Relativistic viscous hydrodynamics

The bulk viscosity z and the shear viscosity h 
characterizes the quark-gluon plasma's 
response to deviation from equilibrium

Bulk pressure
Shear stress tensor
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