The direct photon puzzle

Jean-François Paquet

January 16, 2017

ALICE Journal Club

What is the "direct photon puzzle"?

<<< Let me try a simple definition >>>

Background information:

- 1) "Direct photons"=Photons <u>not</u> produced by a hadronic decays $\eta^{\circ} + \gamma \gamma = \eta^{\circ} + \gamma \gamma = \dots$
- 2) Thermal photons (radiated by the quark-gluon plasma) are thought to dominate direct photon measurements

Puzzle

Calculations struggle to explain all direct photon measurements (spectra and v_n) at the same time

Overview

- Why direct photons (and why heavy ion collisions)?
- Sources of photons, with emphasis on prompt photons
- Understanding thermal photons
- Where do we go from here?

Why direct photons (and why heavy ion collisions)?

Why study heavy ion collisions?

Time

The "quark-gluon plasma"

The "quark-gluon plasma" (QGP)

Study many-body properties of deconfined nuclear matter (quantum chromodynamics):
e.g. shear and bulk viscosities

How to study the plasma?

The "quark-gluon plasma" (QGP)

How do we study the properties of the QGP?

Photons/dileptons, soft hadron observables (p_T spectra, v_n), jet energy loss, heavy quarks, ...

How to study the plasma?

How do we study the properties of the QGP?

Photons/dileptons, soft hadron observables $(p_{T} spectra, v_{n})$,

jet energy loss, heavy quarks, ...

Sources of photons in heavy ion collisions

Sources of photons

Pre-equilibrium emission

Late stage emission (e.g. $\pi \rho \rightarrow \pi \gamma$)

Also: photons from jet-plasma interactions, B-field, ...

Direct photons

Pre-equilibrium emission

Late stage emission (e.g. $\pi \rho \rightarrow \pi \gamma$)

Also: photons from jet-plasma interactions, B-field, ...

Prompt photons: in p+p collisions

Think about protonproton collisions

A parton (quark/gluon) from each proton interact and produce a photon (or produce a parton that then fragments into a photon)

$$E_h \frac{d^3\sigma}{dp_h^3} = \sum_{a,b,c} \int \!\! dx_a dx_b \frac{dz_c}{z_c} f_{a/A}(x_a,Q_{\rm fac}) f_{b/B}(x_b,Q_{\rm fac}) \left[E_c \frac{d^3\hat{\sigma}}{dk_c^3} \left(Q_{\rm ren} \right) \right] D_{h/c}(z_c,Q_{\rm frag})$$
 Parton distribution function
$$\begin{array}{c} \text{Parton-parton} \\ \text{cross-section} \end{array}$$
 fragmentation function

Prompt photons: A+A, high p_{τ}

At high p_T: binary scaling of prompt photons

$$E\frac{d^3N_{AA}}{d\mathbf{p}} \approx \frac{N_{bin}}{\sigma_{pp}^{inel}} E\frac{d^3\sigma_{pp}}{d\mathbf{p}}$$

Can include small corrections from nuclear parton distribution function

But there's more: parton energy loss

Prompt photon channels

Two distinct contributions: "isolated" & fragmentation

By "isolated", I mean e.g. Compton scattering

gluon+quark → gluon+γ

By fragmentation, I mean e.g.

gluon+quark → gluon+quark

and γ is produced during hadronisation

Prompt photon & energy loss

Two distinct contributions: "isolated" & fragmentation

Not affected by energy loss

By "isolated", I mean e.g. Compton scattering

gluon+quark → gluon+γ

By fragmentation, I mean e.g.

gluon+quark → gluon+quark

and γ is produced during hadronisation

Affected by energy loss

(Also, related to jet-plasma photons)

Prompt photon channels

Two distinct contributions: "isolated" & fragmentation

Dominate at high p_T

By "isolated", I mean e.g. Compton scattering

gluon+quark → gluon+γ

By fragmentation, I mean e.g.

gluon+quark → gluon+quark

and γ is produced during hadronisation

Dominate at low p₊

Prompt photons: why do we care?

Why so much discussion about prompt photons?

Because they are the **reference**

RHIC

In proton-proton and proton-nucleus collisions, prompt photons dominate at all p_T >~1 GeV

Prompt photons: A+A

But in nucleus-nucleus collisions, do we know the reference?

Prompt photons describe well the high p_T data in A+A

Prompt photons underestimate the low p_T data in A+A:

direct photon excess!

but...
jet energy loss and jet-medium
photons not accounted for

Prompt photons: bottom line

Prompt photons can be a tricky reference unless plasma effects are taken into account (however: model bias)

A photon excess **is** observed, but remember how this excess is defined

Thermal photons

Reminder: sources of photons

Also: photons from jet-plasma interactions, B-field, ...

(e.g. $\pi \rho \rightarrow \pi \gamma$)

Thermal photons & temperature profile

Plasma seems to reach & maintain local equilibrium:

A <u>local</u> temperature can be defined

Evolution of the temperature & flow velocity given by relativistic hydrodynamics

Initial temperature

Thermal photons: rate & plasma profile

$$E\frac{d^3N}{d\mathbf{k}} = \int d^4X E\frac{d^3\Gamma}{d\mathbf{k}}(K^{\mu}, u^{\mu}(X), T(X), \pi^{\mu\nu}(X), \Pi(X))$$

Thermal emission rate:

Given local plasma properties (e.g. temperature, flow velocity), how much photons are radiated?

Spacetime profile of plasma: hydro

Hydrodynamic model of plasma:

- > Initial conditions
- > Hydrodynamic equations
- Production of hadrons from hydro (Cooper-Frye + afterburner)

Flow

$$T^{\mu\nu}(X) = \epsilon(X)u^{\mu}(X)u^{\nu}(X) - \left[\mathcal{P}(X) + \Pi(X)\right]\Delta^{\mu\nu}(X) + \pi^{\mu\nu}(X)$$

Energy density (related to temperature through equation of state)

Bulk pressure Shear stre

10

0.12

Fix hydro with hadrons

Hydrodynamic model of plasma:

- > Initial conditions
- > Hydrodynamic equations
- Production of hadrons from hydro (Cooper-Frye + afterburner)

Average energy of hadrons?

Jean-François Paquet (Stony Brook)

0.12

0.11

-10

Azimuthal distribution?

Photon emission rate

How much does a plasma of nuclear matter at temperature T radiate?

Gas of hadrons: ~100 MeV Deconfinement: ~160 MeV Max T at RHIC: ~400 MeV Max T at LHC: ~600 MeV: **Toward asymptotic QGP**

Emission rate

Effective hadronic models

AdS/CFT and other holography

Effective "QCD" models

Lattice (limited)

Perturbative QCD

Electromagnetic emission rate

How much does a plasma of nuclear matter at temperature T radiate?

Gas of hadrons: ~100 MeV Deconfinement: ~160 MeV Max T at RHIC: ~400 MeV Max T at LHC: ~600 MeV: **Toward asymptotic QGP**

Emission rate

Effective hadronic models

Refs: Texas A&M (Rapp et al) and McGill (Gale et al) groups; Stony Brook group (Dusling & Zahed) and others

AdS/CFT and other holography

Effective "QCD" models

Refs: Caron-Huot et al (AdS/CFT); Finazzo and Rougemont (bottom-up holography), ...

Perturbative QCD

Refs: Arnold, Moore, Yaffe (AMY); Ghiglieri, Teaney; Laine, ...

Thermal photons: bottom line

$$E\frac{d^3N}{d\mathbf{k}} = \int d^4X E\frac{d^3\Gamma}{d\mathbf{k}}(K^{\mu}, u^{\mu}(X), T(X), \pi^{\mu\nu}(X), \Pi(X))$$

Thermal emission rate:

Given local plasma properties (e.g. temperature, flow velocity), how much photons are radiated?

Thermal photons

Thermal photons from different temperature ranges:

Not just temperature!

Thermal photons vs flow

Number of photons stays the same, but the flow changes (boosts) the momentum distribution

Thermal photons: p_T ranges

Low p_T photons are from low temperatures (late times)

Direct photon spectra vs data

Agreement with data? (better at LHC than RHIC)

Beware: prompt photons

Momentum anisotropy: v_2

First measurement of direct photon v_2 (PHENIX collaboration, 2011)

Direct photon v₂ as large
———— as pion v₂

Why is this surprising?

Reason 1: Prompt photons

Reason 2: How v₂ develops

Summing different sources of v_2 's

$$\frac{1}{2\pi p_T} \frac{dN}{dp_T d\phi} = \left(\frac{1}{2\pi p_T} \frac{dN}{dp_T}\right) \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n))\right]$$

but what if there are two sources of direct photons? (say thermal and prompt)

$$v_2^{\text{direct } \gamma}(p_T) = \frac{[\text{spectra of thermal } \gamma \text{ at } p_T] \times v_2^{\text{thermal}}(p_T) + [\text{spectra of prompt } \gamma \text{ at } p_T] \times v_2^{\text{prompt}}(p_T)}{[\text{spectra of thermal } \gamma \text{ at } p_T] + [\text{spectra of prompt } \gamma \text{ at } p_T]}$$

v₂ is a weighted average

Since prompt photons are expected to have a small v_2 , they dilute (decrease) the thermal photon v_2

How is v, of thermal photons developed?

Spatial anisotropy leads to anisotropic expansion (different pressure gradients in x and y)

Anisotropic flow velocities boosts particles by different amount, which lead to a momentum anisotropy (v_n)

Thermal photon v_2 and time

Early times: v₂ much smaller than pion's

Late times: v₂ similar pion's

Intermediate times: "interpolate" between two limits

Overall result: expect thermal photon v₂ smaller than pion

Direct photon v₂: qualitative expectations

 p_T (GeV)

Thermal photon v₂ smaller than the pion one because of early time thermal photon emission w/ low v₂

Prompt photons should reduce the direct photon v_2 even more (assuming significant spectra and small v_2)

Bottom line: expect direct photon v_2 smaller than pion (but depends on p_T !)

Direct photon v, vs data

Low p_T dominated by late times thermal photons High p_T smaller due to early times thermal photons and prompt photons

Progress that improved agreement w/ data

$$E\frac{d^3N}{d\mathbf{k}} = \int d^4X E\frac{d^3\Gamma}{d\mathbf{k}} (K^{\mu}, \mathbf{u}^{\mu}(X), T(X), \pi^{\mu\nu}(X), \Pi(X))$$

T Emission rate

Effective hadronic models

More complete low temperature photon emission rate

Better initial state (fluctuations, initial flow); more realistic EOS

Perturbative QCD

Where do we go from here?

Still tension with data ("photon puzzle"), but lots of progress in understanding thermal photons over the past years

Future improvement

- Pre-equilibrium emission?
- Late stage emission?
- Jet-plasma photons & fragmentation photons energy loss
- Other sources?

Also, future improvements on thermal photons coming from improved hydrodynamics description and better-constrained thermal photon emission rates?

From experimental side?

- **Trend of photon v**_n at low p_T (does it go to 0?) and high p_T (how fast does it decrease?)
- Integrated observables?
 e.g. multiplicity, integrated v₂?
- Low p_T isolated photons? Or use $p_T \sim 4-10$ GeV at LHC (2.76 TeV) to better understand fragmentation photons?
- Centrality/center-of-mass-energy/ system-size dependence?
- Low p_T photons in p+p?

Questions?

Back-up slides

Photon production in small systems

Thermal photons in small systems: R_{pA}

(Ref.: Shen, Paquet, Denicol, Jeon & Gale, arXiv:1609.02590)

Factor of $\sim 2-3$ enhancement at low $p_{\scriptscriptstyle T}$ for central small systems

Enhancement ~1.5 at minimum bias

Theory vs data:

Need good constraints on low p_T photons w/ cold nuclear effects

Thermal photons in small systems: v₂

Predictions for direct photon v₂ at RHIC and LHC

(Ref.: Shen, Paquet, Denicol, Jeon & Gale, arXiv:1609.02590)

$$v_2 \sim 2\%$$
 at the RHIC ({p,d,He}+Au)

$$v_2$$
~4% at the LHC

Eventually: Additional tool to study collectivity(?) in small systems

Viscosity & thermal photons

Viscous corrections to rate

Rate	Ideal	Shear correction	Bulk correction
$QGP - 2 \rightarrow 2$	[52]	Yes [57]	Forward scattering approximation
QGP — Bremsstrahlung	[52]	No	No
Hadronic — Meson gas (π, K, ρ, K^*, a_1)	[26]	Yes [18, 58]	Yes [this work]
Hadronic — ρ spectral function (incl. baryons)	[26, 27]	No	No
Hadronic — $\pi + \pi$ bremsstrahlung	[27, 59]	No	No
Hadronic — π - ρ - ω system	[28]	No	No

Viscosity and emission rate

Medium evolution: hydrodynamics

<u>Ideal hydro = local thermal equilibrium</u>

f(p)="Fermi-Dirac" (quark, baryons)

or "Bose-Einstein" (gluon, mesons)

<u>Viscous hydro = some deviation from local thermal equilibrium</u>

 $f(p)="Fermi-Dirac"/"Bose-Einstein" + \delta f(p)$

 $\delta f(p)$ is related to the viscosity (shear and bulk) of the plasma

Deviation from equilibrium = correction to EM probe rate

$$k \frac{d^{3} \Gamma_{\gamma/\gamma^{*}}}{d \mathbf{k}} = k \frac{d^{3} \Gamma_{\gamma/\gamma^{*}}^{ideal}}{d \mathbf{k}} + \pi^{\mu\nu} K_{\mu} K_{\nu} d \Gamma_{\gamma/\gamma^{*}}^{viscous, shear} + \Pi d \Gamma_{\gamma/\gamma^{*}}^{viscous, bulk}$$

Refs: Dusling, NPA (2010); Shen, Paquet, Heinz & Gale, PRC (2015)

Effect on photons of viscous rate correction

$$k \frac{d^{3} \Gamma_{\gamma}}{d \mathbf{k}} = k \frac{d^{3} \Gamma_{\gamma}^{ideal}}{d \mathbf{k}} + \pi^{\mu \nu} K_{\mu} K_{\nu} d \Gamma_{\gamma}^{viscous, shear} + \Pi d \Gamma_{\gamma}^{viscous, bulk}$$

Effect on photon spectra and v_2 ?

Summary: "thermal" EM probes

$$E\frac{d^3N}{d\mathbf{k}} = \int d^4X E\frac{d^3\Gamma}{d\mathbf{k}} (K^{\mu}, u^{\mu}(X), T(X), \pi^{\mu\nu}(X), \Pi(X))$$

T Emission rate

Effective hadronic models

Perturbative QCD

$$k \frac{d^{3} \Gamma_{\gamma/\gamma^{*}}}{d \mathbf{k}} = k \frac{d^{3} \Gamma_{\gamma/\gamma^{*}}^{ideal}}{d \mathbf{k}} + \pi^{\mu \nu} K_{\mu} K_{\nu} d \Gamma_{\gamma/\gamma^{*}}^{viscous, shear} + \Pi d \Gamma_{\gamma/\gamma^{*}}^{viscous, bulk}$$

Prompt photons

Prompt and thermal photons

Prompt photon reference?

Prompt photons

$$E\frac{d^3\sigma_{pp}}{d\mathbf{p}} = \sum_{a,b,c,d} f_{a/p}(x_a, Q_{fact}) \otimes f_{b/p}(x_b, Q_{fact}) \otimes d\hat{\sigma}(Q_{ren}) \otimes D_{\gamma/c}(z_c, Q_{frag})$$

Prompt photons in vacuum

"Isolated" photons

Fragmentation γ

Note: At LHC, fragmentation photons increasingly dominant at low p₊

(Figure credits: Stankus, ARNPS 2005)

Prompt photons in medium

Parton energy loss =
Final parton less energetic =
Less photons from fragmentation
& positive v₂

"Isolated" photons

Fragmentation photon energy loss and jetmedium photons

(Figure credits: Stankus, ARNPS 2005)

Parton energy loss =
Medium-induced photon emission=
More photons from final showering
& negative v₂

Jet-medium photon v₂

 $p_{_{\rm T}} [{\rm GeV}]$

Small negative v_2 of <u>jet-medium</u> photons from BAMPS ($v_2 \sim 0.5$ -1% in 20-40% centrality)

Quantitatively similar to Turbide et al (2008)

Prompt photons in medium

(Prompt w/ e-loss and jet-medium calculations from Turbide, Gale, Frodermann & Heinz, PRC, 2008)

Also: can this be investigated with ~low p_⊤ photons with isolated cuts?

"Isolated" photons

Fragmentation photon energy loss and jet-medium photons

Thermal photons

Evaluating the EM emission rate

QCD plasma at low temperature: effective hadronic models

Example: Turbide, Rapp and Gale (2003)

Photon production of a gas of (π, K, ρ, K^*, a_1) mesons

$$k \frac{d^{3}\Gamma_{\gamma}}{d\mathbf{k}} = \frac{1}{2(2\pi)^{3}} \int \frac{d^{3}p_{1}}{2P_{1}^{0}(2\pi)^{3}} \frac{d^{3}p_{2}}{2P_{2}^{0}(2\pi)^{3}} \frac{d^{3}p_{3}}{2P_{3}^{0}(2\pi)^{3}} (2\pi)^{4} \delta^{4}(P_{1} + P_{2} - P_{3} - K) |\mathcal{M}|^{2} \times f_{B/F}(P_{1}) f_{B/F}(P_{2}) (1 + \sigma_{B/F} f_{B/F}(P_{3}))$$

Evaluated from effective Lagrangian fitted to hadronic data $\begin{array}{c} \pi^{+}(p) & \gamma(h) \\ \hline \mu^{+}(p) & \gamma(h) \\$

Thermal photon emission rate

less hot (hadronic D.O.F.)

Temperature

very hot (QGP)

Effective Lagrangian

Texas A&M/McGill (Turbide, Rapp, Gale et al)

(Switch at 180 MeV)

Perturbative expansion in α_{ϵ}

QGP LO (Arnold, Moore, Yaffe. 2002)

Perturbative rate at LO and NLO

NLO="LO"+"collinear (coll)"+"soft"+"semi-collinear (sc)"

Perturbative rate vs lattice

Perturbative photon rates remarkably consistent with lattice results around T~T_c⁺

(note: quarks are quenched in both the lattice and pQCD calculations)

(Ref.: Ghiglieri, Kaczmarek, Laine & Meyer, PRD, 2016)

Other calculations at T~200-400 MeV

Semi-QGP: Mean field with suppressed Polyakov loop

[Gale et al, PRL, 2015; Hidaka, Lin, Pisarski & Satow, JHEP, 2015]

Effect of suppressed QGP rate

Spectra suppressed

Small effect on v₂
(counterbalance of thermal and prompt photons)

Hydrodynamics flow and boost

Thermal rate is (almost always) evaluated in rest frame

$$k \frac{d^{3}\Gamma_{\gamma}}{d\mathbf{k}} = \frac{1}{2(2\pi)^{3}} \int \frac{d^{3}p_{1}}{2P_{1}^{0}(2\pi)^{3}} \frac{d^{3}p_{2}}{2P_{2}^{0}(2\pi)^{3}} \frac{d^{3}p_{3}}{2P_{3}^{0}(2\pi)^{3}} (2\pi)^{4} \delta^{4}(P_{1} + P_{2} - P_{3} - K) |\mathcal{M}|^{2} \times f_{B/F}(P_{1}) f_{B/F}(P_{2}) (1 + \sigma_{B/F} f_{B/F}(P_{3}))$$

Rate in other frames?

Just boost (Lorentz transform):

$$k \frac{d^{3} \Gamma}{d \mathbf{k}} (k, \mathbf{u}) = k \frac{d^{3} \Gamma}{d \mathbf{k}} (k = K \cdot \mathbf{u}, \mathbf{u} = \mathbf{0})$$

Hydro flow velocity

Centrality dependence

Relativistic viscous hydrodynamics

$$\partial_{\mu}T^{\mu\nu}(X) = 0$$
 Shear stress tensor
$$T^{\mu\nu}(X) = \epsilon(X)u^{\mu}(X)u^{\nu}(X) - \left[\mathcal{P}(X) + \Pi(X)\right]\Delta^{\mu\nu}(X) + \pi^{\mu\nu}(X)$$

$$\tau_{\Pi}\dot{\Pi} + \Pi = -\boxed{\zeta}\theta + \mathcal{K} + \mathcal{R} + \mathcal{J}$$

$$\tau_{\pi}\Delta^{\mu\nu}_{\alpha\beta}\pi^{\alpha\beta} + \pi^{\mu\nu} = 2\eta \tau^{\mu\nu} + \mathcal{K}^{\mu\nu} + \mathcal{R}^{\mu\nu} + \mathcal{J}^{\mu\nu}$$

The bulk viscosity ζ and the shear viscosity η characterizes the quark-gluon plasma's response to deviation from equilibrium