Statistics for HEP (1/3)

Diego Tonelli (INFN Trieste)
diego.tonelli@cern.ch

CERN-Fermilab HCP Summer School
Aug 28, 2017
Welcome and thank you! Shown below is you

Any formal education in statistics/machine learning

- Yes: 74%
- No: 26%

What level?

- Advanced: 35%
- Basic: 65%

Did you use ML tools in your research

- Yes: 45%
- No: 55%

Which tools?

- BDT: 60%
- ANN: 28%
- Other: 12%
Statistics

The science of learning from data by identifying the properties of populations of natural phenomena and quantify our corresponding knowledge and uncertainty.

Statistics allows to design better experiments and make the most of our observations. It offers a structure to frame our results, interpretate them to derive implications, and a language to communicate them. Typical tasks

• Measure the value of a physics parameter — point estimation

• Finding its uncertainty — interval estimation

• Comparing one hypothesis agains another (in search for anomalies/discoveries) — hypothesis testing

• Comparing one hypothesis against all others — Goodness of fit
Understanding nature from blurred observations
Top-down vs bottom-up understanding

Similar to low-level perception processes, HEP advances through the interplay of top-down (theory-guided) and bottom-up (data-driven) processing.

The need for detail (quality and quantity of data) is driven by the distinctiveness of the phenomena and our level of familiarity with it.

When a roadmap suggest “what to expect”, a little data goes a long way (top-down dominates).

Since the 80’s, the standard model has served us well as a road map to guide HEP’s exploration, because it offered a few robust no-lose theorems that led to the discovery of the W and Z bosons, the top quark, and the Higgs boson.
The standard model is now complete. It is robust at the energies explored so far and technically up to 10^{10} GeV.

Are we done?
2012 — …: a new data driven era?

No.

Bad news is that top-down luxury is over.
[Is that truly bad news for experimentalists?]

It is likely that next progress on some of the most compelling questions will come through the bottom-up, brute-force approach: look and try to make a sense of lots of quality data from many different experimental environments.

A particularly fitting time to focus on methods of extracting information from the data.
What to expect

This won’t be a tutorial/cookbook. There won’t be any hands on.

I’ll try to insist on some fundamental concepts, hoping to consolidate (or establish) foundations for you to dig further, enrich what you already know, and expose you to some different points of view.

These lectures won’t be very forward-looking. Rather focused on the core basics. Excellent material from previous HCPSS and and online stuff by K. Cranmer, M. Kagan, A. Rogozhnikov, T. Junk etc. is great to fill you in on most recent/ongoing developments. (Detailed refs on Wed)

Will take it easy: my goal is that you pick up most of this in real time and interrupt me with questions when not.

I have no lecture notes. So tried to compose fairly descriptive slides aiming at making the logic decipherable offline too. Additional materials and some derivations in the backup for reference. Please let me know of mistakes.
Outline

Tomorrow, Tue 29.8 — Confidence-intervals. Likelihood-ratio ordering Systematic uncertainties. Profile-likelihood ratio. Hypothesis testing.

Wed, 30.8 — Introduction to statistical learning, linear discriminants, the multilayer perceptron, decision trees.
Many thanks

to G. Punzi, B. Cousins J. Heinrich, L. Ristori, E. Milotti, D. Derkach

for enlightening many of the notions discussed here in formal lectures, discussions, etc…

for making your slides publicly available so that I could steal from them.
Quick recap of the basics
Fundamental notions

Random event: an event that has >1 possible outcome. The outcome isn’t predicted deterministically, but a probability* for each outcome is known.

Random events are associated to variates (“(random) variables”, “observables”) x, which take different values, corresponding to different possible outcomes. Each x value has its probability* $p(x)$. The outcomes generate a probability distribution of x.

A collection of random events forms a population: the hypothetical infinite set of repeated independent and (nearly) identical experiments. Observed distributions are interpreted as finite-size random samplings from the corresponding population’s parent distributions.

Goal: quantify the collective properties of the parent distributions, not of any individual element of the sample.

*Probability intended as limit of long term frequency, more later.
Parent distribution

expt #1

expt #2

expt #3

...
You do it everyday

Most of you regularly quote uncertainties in counting experiments. E.g., in an histogram, a bin with N entries has an error bar (e.g., of length \sqrt{N})

What that bar exactly mean?

Am I really uncertain if in my sample N events are in that bin?

The bar represents the fluctuations in the counts of that bin one expects if the experiment was repeated. I.e, the fluctuations between samples drawn from the same parent distribution.

Data location

Simple and most common quantity if one wants to summarize the distribution information into a single number.

For a sample of N events, each associated with a variable x_i and binned into an histogram with n bins, the sample mean is

Unbinned sample mean $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

Binned sample mean $\bar{x} = \frac{1}{N} \sum_{j=1}^{n} x_j n_j$

Linear: $\alpha \bar{x} + \bar{y} = \alpha \bar{x} + \bar{y}$
Data dispersion

The mean says nothing about the dispersion of data, another key information to grasp the features of a population.

Variance: average of the difference square from the mean

\[
V(x) = \overline{(x - \overline{x})^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2
\]

Easier to remember: *the mean of the squares minus the square of the mean*

\[
V(x) = \overline{x_i^2} - \overline{x}^2
\]

The root of the variance is the **standard deviation**, \(\sqrt{V(x)} = \sigma\), which is typically used as a standard measure of spread.
In general, more than one variable is associated to each random event.

Take two variables (easy to generalise further): each of N statistical experiments observes of a pair of numbers \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\}

The sample mean and variance are easily generalized to estimate the location and dispersion of the sample along each axis of the multidimensional space.

An additional useful concept relates the dispersions along different axes.
Covariance and correlation

\[
Cov(x, y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})
\]

Easier to remember: *the mean of the product minus the product of the means*

\[
Cov(x, y) = \bar{xy} - \bar{x} \bar{y}
\]

In N-dimensional data, defines a matrix

\[
V_{ij} = Cov(x^{(i)}, x^{(j)})
\]

Cov has units. Better to use a unitless quantity, the **Pearson linear correlation**

\[
\rho(x, y) = \frac{Cov(x, y)}{\sqrt{V(x)} \sqrt{V(y)}} = \frac{Cov(x, y)}{\sigma_x \sigma_y}
\]

and associated correlation matrix

\[
\rho_{ij} = \frac{V_{ij}}{\sigma_i \sigma_j}
\]
Correlation and dependence between variables are sometimes confused.

Two variables x and y are \textbf{(linearly) uncorrelated} if $\rho(x,y) = 0$

- Two variables x and y are \textbf{statistically independent} if their two-dimensional distribution $f(x,y)$ can be factorized into the product $f(x,y) = g(x) h(y)$. That is, the shape of one distribution does not depend on the value of the other variable. Information from one variable does not carry information on the other.

- \textbf{Independent variables are also uncorrelated.}

- \textbf{Uncorrelated variables may still be dependent}
In pictures

Correlation strength says nothing about the “slope”

In all cases below, correlation is zero. But the two variables are clearly not independent.
Testing for correlation and dependence

Testing for correlations: just look at the correlation coefficients. If they are nonzero, variables are certainly dependent. If they are zero, may want to check against dependence: check if the distributions of one variable “in slices” overlap.
Correlation and causality

Often correlations are used to implicate causality as causes of phenomena are relevant to “understand what’s going on” and build scientific evidence.

Statistics won’t tell much about causality.

Phenomena (say A and B) that appear correlated could mean

• A causes B

• B causes A

• A third phenomenon C causes both A and B

• Coincidental correlation
Triangulation

NYC study in the 80’s

Warm temperatures push people to buy more ice-creams, and also to spend more time outside and party, increasing chances that gang members meet and get violent.
Coincidence

Sources: National Vital Statistics Reports, US Department of Agriculture, Center for Disease Control and Prevention. Plot: tylervigen.com
I used to think correlation implied causation.

Then I took a statistics class. Now I don’t.

Sounds like the class helped. Well, maybe.
Probability density function

Applies to continuous variables. Choose a short range Δx of the variable. The local frequency of events is approximated by $f(x)\Delta x$.

As $\Delta x \to 0$, the probability that x is contained in the range x and $x + \Delta x$

$$f(x) \, dx$$

$f(x)$ is the probability density function.

It is a function of the “data” x.

It is not a probability: has units of x^{-1}

It is normalized to unity.

Typically pdf shape depends on model-parameters: $f(x|\alpha)$ “f of x given α”

The equivalent for discrete variables is the probability mass function, which has no units and is a proper probability.
Ubiquitous pdf’s

A few pdf occur frequently in nearly any statistical problem

- **Gaussian**
 \[
 f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}}
 \]

- **Poisson**
 \[
 f(j; \mu) = \frac{\mu^j}{j!} e^{-\mu}
 \]

- **Binomial**
 \[
 f(j; n, p) = \binom{n}{j} p^j (1 - p)^{n-j}
 \]

Be familiar with these (more discussion in backup if needed). Look up www.fysik.su.se/~walck/suf9601.pdf for a more comprehensive list.

Can be also multidimensional

\[
f(\vec{x}; \vec{m}) = f(x_1, x_2, \ldots, x_n; m_1, m_2, \ldots, m_m)
\]
Joint, conditional, marginal

\(f(x_1, x_2; m) \) is the joint pdf. Contains the whole information. Related to probability that \(x_1 \) and \(x_2 \) assume simultaneously values in certain ranges.

\(f(x_2 \mid x_1; m) \) is the conditional pdf. Related to probability that \(x_1 \) is in a certain range, given that \(x_2 \) has a specified defined value.

\[\int f(x_1, x_2; m) \, dx_2 \] is the marginal pdf. Related to the probability that \(x_1 \) is in a certain range regardless of \(x_2 \) value.

Generalize to the n-dimensional pdf \(f(x_1, x_2, \ldots, x_n) \)
Characterizing the pdf

The pdf can be used as weight to obtain the average value of any function \(g(x) \) of the random variable

\[
\langle g(x) \rangle = E[g(x)] = \int g(x) f(x) \, dx
\]

In analogy with what done for data distributions, pdfs can be characterized by a few numbers that quantify their location and dispersion.

The expectation value of \(x \) is the mean of \(x \)

\[
\langle x \rangle = E[x] = \int x f(x) \, dx
\]

The expectation value of \((x-E[x])^2 \) is the variance of \(x \)

\[
V(x) = \langle x^2 \rangle - \langle x \rangle^2 = E[x^2] - E^2[x] = \int (x - \langle x \rangle)^2 f(x) \, dx
\]

Might be nondefined for some pdf. E.g., Cauchy (Breit-Wigner) pdf.
Functions of random variables

Functions of random variables are themselves random variables. Take $f(x)$ as pdf of the random variable x and $y(x)$ a function of x (e.g., change of variables).

Conservation of integrated probability between the two metrics yields $g(y)$, the pdf for $y(x)$. Because it is an integrated quantity involves the Jacobian.

$$P(x_a < x < x_b) = \int_{x_a}^{x_b} f(x) \, dx = \int_{y(x_a)}^{y(x_b)} g(y) \, dy = P(y(x_a) < y < y(x_b))$$

Because

$$\int_{y(x_a)}^{y(x_b)} g(y) \, dy = \int_{x_a}^{x_b} g(y(x)) \left| \frac{dy}{dx} \right| \, dx$$

therefore

$$f(x) = g(y) \left| \frac{dy}{dx} \right|$$

The Jacobian that modifies the volume element makes the mode (peak) of the probability density not invariant under change of metric: renders ill-defined the inferences based on maximum probability density.
A special case — probability integral transform

Take x continuous with pdf f(x). Consider the change of variables that transforms x into its cumulative y(x), that has pdf g(y).

\[y(x) = \int_{-\infty}^{x} f(x') dx' \]

Using \[f(x) = g(y) \left| \frac{dy}{dx} \right| \] one gets \[\left| \frac{dy}{dx} \right| = f(x) \] which yields \(g(y) = 1 \)

Any continuous distribution can be transformed into an uniform distribution. Or alternatively, there is always a metric in which the pdf is uniform:

- the inverse transformation allows efficient MC generation of p(x) using a generator of random numbers between 0 and 1.
- this property questions the special role frequently attributed to uniform priors in Bayesian inference (more later)
Inferring from data
Fundamental ingredients

Given some data, need to

1. Identify all relevant observations x;

2. Identify all relevant unknown parameters m;

3. Construct a model for both
The model

The model is the mathematical structure

\[p(\text{data} \mid \text{physics}) = p(x|m)\]

that incorporates all the physics, knowledge, intuition to best describe the relevant relations between observables \(x\) and unknown parameters \(m\).

It is a probability model — you don’t know exactly what value of \(x\) would be observed if \(m\) had some definite value.

The width of \(p(x|m)\) is connected to the statistical uncertainty of your inference
The approximate model

The model $p(x|m)$ is assumed as your best approximation of the actual relationships between m and x relevant for the problem at hand.

Parametrize differences with the actual physics through additional dependencies on unknown nuisance parameters — $p(x|m,v)$.

The unknown v values are uninteresting for the measurement but do influence its outcome. Lack of knowledge of v introduces an uncertainty in the $p(x|m,v)$ shape.

Not only you don’t know exactly what value of x would be observed if m had a definite value, you don’t even know exactly how probable each possible x value is.

The uncertainty in the shape of $p(x|m)$ reflects into the systematic uncertainty of the inference.
Role

The model is the fundamental building block of most of HEP inference, both in Frequentist and Bayesian procedures. The objective step everyone agrees on.

The model is also the single strongest driver of inference performance: improving the model is the best way of improving the inference.

• With parameters m fixed, the model is the probability density function of data, which provides the ability to generate pseudodata via Monte Carlo.

• With data fixed, the model is the likelihood function of the m parameters.
Model building

Three main thrusts for model motivation/justification.

Monte Carlo modeling

\[
\mathcal{L}_{	ext{SM}} = \frac{1}{2} W^\mu W^\nu - \frac{1}{4} G^\mu G^\nu + \frac{1}{4} B^\mu B^\nu - i \frac{1}{2} Q^\mu Q^\nu
\]

- Elastic vertices and self-interactions of the gauge bosons
- \(L Y u \sim \frac{3}{4} g T^{a} F_{c} B_{c}^{*} \)
- Inelastic vertices and couplings of the gauge bosons

Data driven modeling

- Sideband subtraction
- Same-charge candidates
- Mixed-event candidates
- ABCD methods
- …

Effective modeling

Empirical modeling

WS data

LHCb

Fit

Background

\(M (D^{0} \pi^{+}) \) [GeV/c^2]
Tools

Complexity of models increases with the number of data sets, analysis channels in each data set, model components in each channel etc.

LHC experiments marked an order-of-magnitude increase in model complexity with respect to LEP/HERA/Tevatron/B-factories, especially driven by Higgs boson search: combinations of $O(100)$ channels, likelihoods with $O(1000)$ parameters.

RooFit (originally developed at BaBar) offer a consistent framework to provide tools for collaborative building and handling of complex models.

https://root.cern.ch/roofit-20-minutes

RooStats interfaces with RooFit to offer higher-level statistical tools based on such models.

Inference

The model gives probability to observe a certain set of data assuming some physics

\[p(\text{data} \mid \text{physics}) \text{ is known.} \]

Forward process. From physics to data occurs in

- running experiments (physics true but unknown) and
- simulation (physics known but not necessarily true).

The backward process from data to physics is the inference: make objective and quantitative statements about a population when only a sample of the possible observations is available.

Such generalization isn’t generally possible using the certainty of deductive logic. Unobservability of the parent distribution, but only of a random sampling of it, imposes assessments of probability (or confidence, or uncertainty)
Probability

Two approaches: different notions of probability yield differing inferences.

Frequentist — conceive repeated independent samples

\[P(A) = \lim_{N \to \infty} \left(\frac{N_A}{N} \right) \]

- Uses information observed in data (and that could have been observed in other trials).

- Data are random, theories not. Only applies to repeatable “events”. Restricts to deductions based on \(p(\text{data} \mid \text{theory}) \). Favored theories are those for which our observations are more *usual*.

Bayesian — subjective degree of belief

- combines info from observed data with subjective judgment. Same data with different analysers may yield inconsistent results.

- Treat as random variable any unknown. Broader applications, including to theories/hypotheses.

- Addresses \(p(\text{theory} \mid \text{data}) \) the inductive reasoning one is interested to.
In short

Frequentist use impeccable logic to deal with an issue of no interest to anyone.

Bayesians address the question everyone is interested in, by using assumptions no-one believes

[Lyons through Cranmer]
Whole space

In both cases, for probabilities to be well defined, the whole space or sample need be defined (determines normalization)

“90% of our flights arrive on time”
Flight delayed several hours are canceled, not ‘delayed’, so they get excluded from our sample space.

“Our survey shows that most people lose 5 Kg in a month on this diet”
Happy customers who lost weight are most likely to respond to our survey. The ones who gained weight most likely threw away our survey postcard.

Whole space can be thought as the space of available possibilities given (i.e., conditional to) the assumptions associated with the model (e.g., was a Poisson process, whether or not background is in..)
Bayesian inference
Conditional probabilities

\[P(A \text{ and } B) = \begin{cases}
(P(A|B) \times P(B), &
\text{(Conditional probability for } A \text{ given } B) \\
(P(B|A) \times P(A), &
\text{(Marginal probability for } B) \\
(P(A|B) \times P(B), &
\text{(Conditional probability for } B \text{ given } A) \\
(P(B|A) \times P(A), &
\text{(Marginal probability for } A)
\end{cases} \]
Bayes’ theorem

Yields a key relation between conditional and marginal probabilities.

\[
P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\text{not}B)P(\text{not}B)}
\]

• \(P(B|A)\) is the conditional probability for B given A. Also called posterior because evaluated after fixing a specific value of A.

• \(P(A|B)\) is the conditional probability of A given B.

• \(P(B)\) is the prior probability for B, evaluated before knowing any information on A.

• \(P(A)\) is the marginal (or “prior”) probability for event A. Serves as normalization.
Probability, conditional probability and Bayes Theorem — in pictures

\[P(A) = \]
\[P(B) = \]
\[P(A|B) = \]
\[P(B|A) = \]
\[P(A \cap B) = \]
\[P(A) \times P(B|A) = \]
\[P(B) \times P(A|B) = \]

⇒ \[P(B|A) = \frac{P(A|B) \times P(B)}{P(A)} \]
Remember

\[P(A|B) \text{ is NOT equal to } P(B|A). \]

Variable A: “pregnant”, “not pregnant”

Variable B: “male”, “female”.

\[P(\text{pregnant} | \text{female}) \sim 3\% \text{ but } \]
\[P(\text{female} | \text{pregnant}) >>> 3\% ! \]

[Lyons]
Applying Bayes’ theorem to inference

Have \(x \), observable random variable, and \(m \) inobservable random variable, with known probability distribution \(p(x,m) \). Observe \(x \) (“perform a measurement of \(x \)”), what can I say about \(m \)? Want to know \(p(m|x) \).

Bayes theorem tells me all I possibly need. Allows determining the “a posteriori” probability for any value of \(m \) (look at backup slides for an elementary example).

\[
p(m|x) = \frac{p(x|m) \times p(m)}{p(x)}
\]

If \(x \) and \(m \) are independent \(p(x|m) = p(x) \) and therefore \(p(m|x) = p(m) \). The probability a posteriori equals that a priori: measurement is non informative.
Algorithm to identify b-jets.

Run it on a sample of b-jets and a sample of non-bjets and plot

- abscissa: \(p(\text{btag}| \text{b-jet}) \)
- ordinate: \(p(\text{nobtag} | \text{non b-jet}) \)

for each algorithm setting

Given a sample of jets, what fraction are b-jets? I.e., what is \(p(\text{b-jet}| \text{btag}) \)? Need to know the fraction of b-jets in my sample, that is the prior \(p(\text{b-jet}) \).
Frequentist too believe in Bayes theorem

Application of Bayes’ theorem to random events for which prior information is known is the most powerful way of exploiting all the available information.

Knowledge of the probability distribution $p(x|m)$ and the prior probabilities for m (prior to the observation of x) is very powerful.

It allows to use the observation of x to update the prior knowledge and therefore determine the posterior probability $p(m|x)$, which offers more precise information on m.
Bayesian Inference

Point estimate
Mean of $p(m|x)$, which minimizes the variance of m. Alternatively, value m_{best} that maximizes $p(m|x)$. But it depends on metric: differs if parameter is m or any function $f(m)$.

Interval estimate
Interval (not unique) of m values such that

$$
\int_{m_{\text{min}}}^{m_{\text{max}}} p(m|x) \, dm = \alpha \quad \text{(e.g., } \alpha = 95\%)$$

95% prob. interval

Highest posterior density

95%

$\int_{m_{\text{min}}}^{m_{\text{max}}} p(m|x) \, dm = \alpha$ (e.g., $\alpha = 95\%$)

$p(m|x)$
What if priors aren’t known

• Frequentist: give up on getting \(p(m|x) \). Revert to an estimate based only on data and the assumed model, not on prior knowledge.

• Bayesian: stick to Bayes’ theorem by **assuming** a prior

A though business, as priors do carry information: e.g, the posterior \(p(m_0|x) \) is zero for any value \(m=m_0 \) for which \(p(m_0)=0 \) regardless of what are the observed data.

Because HEP folks expect objective/repeatable results that are free from subjective input and can be interpreted in terms of coverage (more later), many Bayesian analyses make an effort toward using priors that have minimal influence on the result.
Flat priors

Uniform ("flat") priors are commonplace in HEP papers. "Knowing nothing about a parameter, I assign equal probabilities to all its possible values" (the noninformative argument)

Sounds intuitively plausible and has attractive practical features: it’s easy and the parameter value that maximizes the posterior density is the same that maximizes the likelihood.

However, flat priors have serious issues: (i) cannot be normalized without a cutoff (ii) puts most of belief at infinity (iii) the noninformative argument is ill-defined, as any pdf can be transformed into a flat pdf and you’ll get a different answer if the prior is flat in m, 1/m, log(m) etc..

All of this exacerbates with increasing dimensionality of the space of parameters.

Lot of thinking (Jeffrey’s most notably) went into pursuing priors containing “as little information as possible”, so that the posterior is dominated by the data.
Assessing sensitivity to priors

Convincing support of Bayesian results is typically achieved through analysis’ sensitivity studies.

Investigate the sensitivity of one’s analysis on prior choices by, e.g., looking at the median expected results in simulated events, repeat the analysis with various choices for priors, or on smaller subsets of the sample.

Sensitivity analysis provides essential information on how much of the final result $p(m|x)$ is driven by data ($p(x|m)$) and how much by the prior $p(m)$ and is therefore a very desirable “calibration” of any Bayesian result.

Example from PRD 85, 072002 (2011)
What Can Be Computed without Using a Prior?

Not \(P(\text{constant of nature} \mid \text{data}) \).

1) **Confidence Intervals** for parameter values, as defined in the 1930’s by Jerzy Neyman.

2) Likelihood *ratios*, the basis for a large set of techniques for point estimation, interval estimation, and hypothesis testing.

These can both be constructed using the frequentist definition of \(P \).
The likelihood
Likelihood function

Model evaluated at fixed data. Essential in most Bayesian and Frequentist inference

- probability density function $p(x|m)$ of observing generic data x, given the unobservable value of the parameter m.
- Then take actual sample of observed data x_0 and evaluate $p(x_0|m)$
- The likelihood $L(m) = p(x_0|m)$ is a function of parameter m given your data

Connected to probability for observing data x for different choices of the value of the parameter m, not the probability that m has some value given the data.

Likelihood is a complete summary of the data information relevant to the estimate at hand. Ideally should be published as is.
A likelihood is not a pdf

The probability density function \(p(x|m) \) is a parametric function of the observable data \(x \).

The likelihood function \(L(m) \) is a function of the unobservable parameter \(m \).

The pdf, a probability density of the data (random variable), should be normalized to unity over the domain of the random variable.

\[
\int_X p(x|m) \, dx = 1
\]

The likelihood, a function of the parameter \(m \), obeys no specific normalization.

\[
\int_M p(x_0|m) \, dm = ?
\]

In addition, the function values \(L(m) \) are invariant under reparametrization of \(m \) into \(f(m) \): \(L(m) = L[f(m)] \). No Jacobians here, reinforcing the notion that \(L(m) \) is not a pdf for \(m \).
Maximum of the likelihood

The likelihood expresses the probability of observing the data you observed as a function of the parameter value \(m \).

Given some data, parameter values \(m_{\text{low}} \) that make \(L(m) \) small are disfavored: it would be unlikely for nature to generate that set of observed data, had the true value of \(m \) been \(m_{\text{low}} \). Conversely, values \(m_{\text{high}} \) that make \(L(m) \) large are favored.

HEP usually deals with repeated observations \(x \) that are independent and identically distributed. If the likelihood for a single observation \(x' \) is

\[
L(m) = p(x'|m),
\]

the likelihood for the whole experiment is the product of the single-event likelihoods

\[
L(m) = \prod p(x|m)
\]
Example — exponential

Decay process. Assume exponential model. Pdf

\[p(t|\tau) = \frac{1}{\tau} e^{-t/\tau} \]

Probability density of survival after time \(t \)

Then we observe \(N \) decay times and infer the lifetime by maximizing the likelihood.

\[L_k(\tau) = p(t_k|\tau) = \frac{1}{\tau} e^{-t_k/\tau} \]

Likelihood of observation of \(t = t_k \)

\[L(\tau) = \prod_{k=1}^{N} \frac{1}{\tau} e^{-t_k/\tau} = \left(\frac{1}{\tau} \right)^N \exp \left(- \frac{\sum_{k=1}^{N} t_k}{\tau} \right) \]

Likelihood of observation of the full data set
Example - exponential (cont’d)

As high values of the likelihood are associated with favored values of the unknown parameter (lifetime τ here), set to zero derivative

$$\frac{dL(\tau)}{d\tau} = \left[\sum_{k=1}^{N} t_k (1/\tau)^{N+2} - N (1/\tau)^{N+1} \right] \exp \left(- \sum_{k=1}^{N} \frac{t_k}{\tau} \right)$$

$$\frac{dL(\tau)}{d\tau} = 0 \text{ implies } \hat{\tau} = \sum_{k=1}^{N} \frac{t_k}{N}$$

$\hat{\tau}$ corresponding to the average of observed decay times maximizes the likelihood

Had I framed my inference in terms of natural width, $\Gamma = 1/\tau$

$$L(\Gamma) = \Gamma^N \exp \left(-\Gamma \sum_{k=1}^{N} t_k \right)$$

$$\hat{\Gamma} = N / (\sum_{k=1}^{N} t_k) = 1/\hat{\tau}$$

Because L is invariant under parameter transform, its maximum too is so.
Example — Poisson

Model: Poisson-distributed signal, no background.

\[p(j | \mu) = \frac{\mu^j}{j!} e^{-\mu} = L(\mu) \]

Observe \(j = 5 \). What’s the maximum likelihood estimate for my Poisson mean?

Poisson PMF:
\[p(j | \mu) = \frac{\mu^j}{j!} e^{-\mu} \]

(Discrete) function of data

Likelihood:
\[L(\mu | j = 5) = \frac{\mu^5}{5!} e^{-\mu} \]

(Continuous) function of physics par.

Minimize \(-\ln L\).
\[-\frac{d}{d\mu} \ln L(\mu)|_{\hat{\mu}} = 0 \]

\[-\frac{d}{d\mu} (\mu - j \ln \mu + \ln j!) = 1 - \frac{j}{\mu} \]

Given observation \(j \), the ML estimator of the mean rate of success \(\mu \) is \(\hat{\mu} = j \)
Illustrated

Model: Poisson-distributed signal, no background.

Observe $j = 5$.
Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe $j = 5$.

$\mu = 0.5$

Low likelihood

[Berger]
Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe $j = 5$.

[Image of a graph showing two distributions: one with mean $\mu = 0.5$ and another with mean $\mu = 5$. The observed value $j = 5$ is marked with an arrow.]
Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe $j = 5$.

[Diagram showing Poisson distribution with $\mu = 0.5$, $\mu = 5$, and $\mu = 20$.]
Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe \(j = 5 \).
Extended likelihood

Sometimes the number of events of the sample N is itself part of the inference, e.g., measure a production cross sections.

The result of the experiment is N, \vec{x}_1, \vec{x}_2,...,\vec{x}_N, it is convenient to use the extended likelihood, where addition of a Poisson term (due to total event count) properly accounts for the fluctuations on N

$$L(\nu, m) = \frac{\nu^N}{N!} e^{-\nu} \prod_{i=1}^{N} p(x_i; m)$$

Besides the uncertainties in the proportions of each class of events in the sample, the Poisson term accounts for the global fluctuation on N
Estimators

Estimator — a function of the data $e(x)$ used to provide an estimate (“a measurement”) of a parameter.

Estimators are functions of data (random variables), hence estimators are random variables with their own probability distributions. An estimator’s performance depend on the properties of its distribution.

The maximum likelihood estimator is very popular in HEP. Why?
Information on a parameter brought by data

(If it exist) the Fisher information of an observation x on the parameter m, related by the likelihood \(p(x \mid m) = L_x(m) \) is

\[
I_x(m) = E \left[\left(\frac{\partial \log(L_x(m))}{\partial m} \right)^2 \right] \\
[I_x(m)]_{ij} = E \left[\frac{\partial \log(L_x(m))}{\partial m_i} \frac{\partial \log(L_x(m))}{\partial m_j} \right]
\]

1 parameter \hspace{2cm} many parameters

If (i) the possible values of x do not depend on m and (ii) the likelihood is twice differentiable and derivatives in m and integrals in x commute

\[
[I_x(m)]_{ij} = -E \left[\frac{\partial^2 \log(L_x(m))}{\partial m_i m_j} \right]
\]

As for N observations the Fisher information is proportional to N, the precision of cannot improve faster than \(1/\sqrt{N} \)
Minimum variance bound

An attractive property of an estimator is its precision (variance). Can it be made arbitrarily small at given number of observations N?

No. \[\text{Var}(\hat{m}) = E[(\hat{m} - E[\hat{m}])^2] \geq \frac{(1 + db/dm)^2}{I_{\hat{m}}(m)} \geq \frac{(1 + db/dm)^2}{I_x(m)} \]

where \hat{m} estimator of m, $b = E[\hat{m}] - m$ is its bias and $I_x(m)$ is the Fisher information.

If inequalities become equalities, \hat{m} reaches minimum variance: efficient estimator. Implies that once \hat{m} is known, no further information is brought by complete knowledge of all data x.

Under weak conditions, the maximum likelihood estimator is asymptotically $(N \to \infty)$ consistent, efficient, and normal (i.e., has Gaussian uncertainties).

NB: does not apply if the range of the observations or the dimensionality of the likelihood depend on the parameter being estimated.
Maximum likelihood variance ("fit error")

The minimum variance bound offers an approximated estimate of the variance as the curvature (2nd derivative) of the log-likelihood at its maximum.

\[
[I_x(m)]_{ij} = -E \left[\frac{\partial^2 \log(L_x(m))}{\partial m_i m_j} \right]
\]

\[
\hat{V}(\hat{m}) \approx -1/E \left[\frac{\partial^2 \ln L}{\partial m^2} \right]
\]

\[
\approx - \left(\frac{\partial^2 \ln L}{\partial m^2} \right)^{-1} \bigg|_{m=\hat{m}}
\]

This is the symmetric uncertainty MINUIT computes after MIGRAD/HESSE. Accurate only for linear problems (Gaussian likelihood).

No guarantee that for N finite the estimator has reached minimum variance. The number of observations needed to approximate asymptotic regime depend on the problem at hand. If in doubt check with toys.
Statistical uncertainty

Repeating our experiment many times, 68.3% of the resulting \([\hat{m}-\sigma, \hat{m}+\sigma]\) intervals include the true value of the parameter.

Different from “in 68.3% of the experiments the true value is the \([\hat{m}-\sigma, \hat{m}+\sigma]\) range” or “there is 68.3% probability that the true value is in the \([\hat{m}-\sigma, \hat{m}+\sigma]\) range”

Language is subtle and important. The true value is not random. Cannot move around or have a probability.

Only data, that is the interval extremes, are random and fluctuate around the true value.

95.5% confidence intervals resulting from 20 identical measurements of a true value of 2.0
The capability for an inference procedure to yield uncertainties that cover the true value with the stated confidence level is a fundamental requirement in frequentist inference and generally desired/expected in HEP (even in Bayesian measurements).

Coverage is a feature of the procedure used, not of a single measurement. The single interval resulting from a specific measurement may contain or not the true value.

Like in linear algebra one defines a vector as an element of a vector space with some properties, a confidence interval is an element of a confidence set of intervals that have coverage under repeated sampling. [Cousins]
Coverage

A property of the procedure, not of the single measurement.

[Rademacker]
1σ implies that $\sim 1/3$ of points should be off!

One-sigma corresponds to 68.3% confidence level.

The scatter of points should bring roughly one out of three points farther than the error bars of the others.
Additional material

Diego Tonelli (INFN Trieste)
diego.tonelli@cern.ch

CERN-Fermilab HCP Summer School
Aug 28, 2017
Sample statistics

Sample mode: value of the variable for which the population is larger.

Sample median: mid-range value of the variable so that 1/2 of sample has larger and 1/2 has smaller values.

Sample mean: arithmetic average of the values of the variable across the sample
An intuitive scheme for deducing statistical distributions is to imagine a sample of otherwise identical N balls belonging to two classes, black and white.

Np white balls and Nq black balls, with $p+q=1$.

In a single trial, a ball is selected, the color observed, and then the ball is returned to the bag.

Can do many trials under identical conditions.
Binomial (cont’d)

If one repeats a single trial many times, one expect the fraction of trials yielding a white ball to approach $\frac{Np}{N} = p$.

Consider now pairs of trials: the fraction of trial pairs yielding two white balls approaches $(\frac{Np}{N})^2(\frac{Np}{N}) = p^2$. Similarly, the fraction of trial pairs yielding two black balls tends to $q^2 = (1-p)^2$. The fraction of pairs yielding a black and a white (no matter the order) is $2pq = 2p(1-p)$

Generalizing to n trials, and taking the probability as a limiting frequency, the probability of j white balls and $(n-j)$ black balls is

$$f(j; n, p) = \binom{n}{j} p^j (1-p)^{n-j}$$

- probability for a specific sequence of j whites and $(n-j)$ blacks
- number of such sequences
Binomial (cont’d)

Important to understand and remember the conditions to which the model applies: the number \(n \) of identical and independent trials is fixed.

If I had fixed the number of successes \(j \) (that is stopping the experiment after drawing \(j \) white balls), I’would have another distribution!

\[
f(j; n, p) = \binom{n}{j} p^j (1 - p)^{n-j} = \frac{n!}{(n-j)!j!} p^j (1 - p)^{n-j}
\]

Expectation value \(\langle j \rangle = np \)

Variance \(V(j) = np(1 - p) \)

Binomial widely used for efficiencies — we’ll get back to that.
Binomial (cont’d)

Shape and location of the binomial vary for variation of its two parameters.
Suppose you don’t know the number of trials. You only know that some rare successes can come out of a continuum of trials. But you know the average rate of success.

Think of lightnings in a thunderstorm.
When the proportion of successes p is very small, but sample size n is large enough to maintain $n*p$ appreciable, one gets the Poisson distribution as the limiting form of the binomial distribution

$$n \to \infty, \ P \to 0, \ \text{with finite } np = \mu$$

$$\binom{n}{j} p^j (1 - p)^{n-j} = \frac{n!}{(n-j)!j!} \frac{\mu^j}{n^j} \left(1 - \frac{\mu}{n}\right)^{n-j}$$

$$= \frac{\sqrt{2\pi} e^{-n} n^{n+\frac{1}{2}}}{\sqrt{2\pi} (n-j)^{n-j+\frac{1}{2}} e^{-n+j}} \frac{\mu^j}{j!} e^{-\mu}$$

$$= \frac{1}{(1 - j/n)^{n} e^{j}} \frac{\mu^j}{j!} e^{-\mu} = \frac{\mu^j}{j!} e^{-\mu} = f(j; \mu)$$

Ubiquitous in “counting experiments”: rare process searches, characterisation of counting detectors and so on
Poisson

Expectation value equals variance “gets broader as it moves right”

$$\langle j \rangle = V(j) = \mu$$

Shape and location of the Poisson vary for variations of its single parameter

For $\mu<1$, the most probable value is always zero.

For $\mu\geq1$ a peak develops, but it is always below μ (which is the mean, not the mode).

For μ integer, $j=\mu$ and $j=\mu-1$ are always equally probable.
Limiting relationships btw standard distributions

Binomial

\[f(j; n, p) = \binom{n}{j} p^j (1 - p)^{n-j} \]

\[n \to \infty, p \to 0, np = \mu \]

Gaussian

\[f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}} \]

Poisson

\[f(j; \mu) = \frac{\mu^j}{j!} e^{-\mu} \]

- \(np \to \mu, \)
- \(\sqrt{np(1-p)} \to \sigma \)
- \(\sqrt{\mu} \to \sigma \)
Normal distribution (or Gaussian, for physicists)

Two parameters

Expectation value

\[\langle x \rangle = \mu \]

Variance

\[V(x) = \sigma^2 \]
Normal distribution (or Gaussian, for physicists)

The most important distribution because of its remarkable theoretical properties and regularities and its ubiquitous applications in natural sciences

\[f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}} \]

The Gaussian distribution frequently approximates well the distributions of many variables commonly encountered in natural sciences, including physics.

Not accidental. It results from the central limit theorem: the mean of \(n\) independent variables that have arbitrary distributions (each with finite variance) tends to be distributed as a Gaussian centered on the average of the individual means.
Central Limit

- Take the N outcomes x_i of N independent random events

- Each x_i is drawn from its (arbitrary) distribution with mean $<x_i>$ and variance σ^2_i (variance should be finite)

Then, the distribution of the sum S of the x_i individual variables is such that

1. The expectation value of S is $\sum x_i$

2. The variance of S is $\sum \sigma^2_i$

3. The distribution of S tends to a Gaussian when $N \to \infty$
Heuristic demonstration

In measurements typically, *many* different, and *independent* sources of random processes contribute to the dispersion of the result of a measured parameter. The central limit theorem ensures that the incoherent superposition of these effects results in a distribution of observations that approximates a Gaussian.

https://www.youtube.com/watch?v=1DTRzPRfu6s
Multidimensional gaussian

\[f(\vec{x}; \vec{\mu}, V) = \frac{1}{(2\pi)^{n/2} \sqrt{|V|}} \exp \left[-\frac{1}{2} (\vec{x} - \vec{\mu})^T V^{-1} (\vec{x} - \vec{\mu}) \right] \]

where \(\vec{x} \) and \(\vec{\mu} \) are column vectors and \(\vec{x}^T \) and \(\vec{\mu}^T \) are row vectors

\[E[x_i] = \mu_i \]

\[\text{Cov}[x_i, x_j] = V_{ij} \]

For \(n=2 \) (twodimensional Gaussian) this is:

\[f(\vec{x}; \vec{\mu}, V) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) \right] \right\} \]
Uniform distribution

\[f(x; x_{\text{min}}, x_{\text{max}}) = \frac{1}{x_{\text{max}} - x_{\text{min}}} \]

if \(x \) is between \(x_{\text{min}} \) and \(x_{\text{max}} \).

\[f=0 \] otherwise.

\[E[x] = \frac{1}{2}(x_{\text{min}} + x_{\text{max}}) \]

\[V[x] = \frac{1}{12}(x_{\text{max}} - x_{\text{min}})^2 \]

Example: for \(H \rightarrow \gamma \gamma \), the energy of the photon is uniform in the range \([E_H(1-\beta)/2, E_H(1+\beta)/2]\)
Exponential distribution

\[f(x; \tau) = \frac{1}{\tau} e^{-x/\tau} \]

if \(x \) is nonnegative.

\(f=0 \) otherwise.

\[E[x] = \tau \]

\[V[x] = \tau^2 \]

Decay of unstable states
Chi-square distribution

\[f(z; n) = \frac{1}{2^{n/2} \Gamma(n/2)} z^{\frac{n}{2} - 1} e^{-z/2} \]

if \(z \) is nonnegative. It is function of just one parameter, \(n \), which is called the number of degrees of freedom

\[
E[z] = n \\
V[z] = 2n
\]

The \(\chi^2 \) is the distribution of the sum of the squares of \(n \) independent Gaussian discrepancies normalised by the variance.

\[
z = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2}
\]
Variances of functions of random variables (a.k.a. “propagation of errors…”)

Often one is interested in knowing the variance of a function of a random variable, given the variance of the random variable.

Linear example: \(y(x) = a \cdot x + b \) with \(\sigma_x \) standard deviation of \(x \).

Standard deviation of \(y(x) \) is

\[
\sigma_y = |\frac{dy}{dx}| \cdot \sigma_x
\]

\[
y + \sigma_y = y(x_0 + \sigma_x)
\]

\[
y(x_0)
\]

\[
y - \sigma_y = y(x_0 - \sigma_x)
\]
Taylor-linearize any non-linear $y(x)$ that does not vary too much between $x_0 - \sigma_x$ and $x_0 + \sigma_x$

$$y(x) \approx y(x_0) + \left| \frac{dy}{dx} \right|_x x$$

$$y + \sigma_y = y(x_0 + \sigma_x)$$

$$y - \sigma_y = y(x_0 - \sigma_x)$$

$$\sigma_y = |\frac{dy}{dx}| \sigma_x$$
Variances of functions of random variables (1D)

\[y(x) \approx y(x_0) + \left| \frac{dy}{dx} \right| x \]

\[V(y) = \langle y^2(x) \rangle - \langle y(x) \rangle^2 \]

\[\approx \langle (y(x_0) + x \frac{dy}{dx})^2 - (y(x_0) + x \frac{dy}{dx}) \rangle^2 \]

\[= \left(\frac{dy}{dx} \right)^2 \left(\langle x^2 \rangle - \langle x \rangle^2 \right) \]

\[= \left(\frac{dy}{dx} \right)^2 V(x) \]

Definition of variance

Replace with linearization

Do the algebra
Variances of functions of random variables

Extend to functions of 2 to n variables.

\[y(x_1, x_2) \approx y(x_{1,0}, x_{2,0}) + \left[\frac{\partial y}{\partial x_1} \right]_{x_{1,0}} x_1 + \left[\frac{\partial y}{\partial x_2} \right]_{x_{2,0}} x_2 \]

\[V(y) = \langle y^2 \rangle - \langle y \rangle^2 \]

\[\approx \left[\frac{\partial y}{\partial x_1} \right]_{x_{1,0}}^2 V(x_1) + \left[\frac{\partial y}{\partial x_2} \right]_{x_{2,0}}^2 V(x_2) + 2 \left[\frac{\partial y}{\partial x_1} \right] \left[\frac{\partial y}{\partial x_2} \right] Cov(x_1, x_2) \]

1. Linearized formulas are exact only if \(y(\vec{x}) \) is linear. They fail if the function is nonlinear over a range comparable in size to \(\sigma_{x_i} \).

2. Linearized formulas apply for any pdf of the \(x_i \) variables.
Set-theoretical axioms of probability

Define the set Ω of all the possible mutually exclusive outcomes of a statistical experiment (sample space). An event A is a set containing one or more elementary outcomes.

Assume that probability P is an additive function on the set and it is measurable on a continuous scale so that it can be represented by a real number. Then

1. $P(A)$ is nonnegative for each possible outcome A.

2. The sum of probabilities over all the possible outcomes (sample space Ω) is unity, $P(\Omega) = 1$.

3. The probability for observing outcome A or outcome B is $P(A) + P(B)$ if A and B are disjoint sets.
Inference — elementary example

• Three identical bags with two balls each. Each ball can be black or white

![Diagram of bags with different combinations of black and white balls.]

• Pick a random bag \((m, \text{unobservable})\) and a random ball inside it \((x, \text{observable})\)

• Ball is white \((x=w)\). What can one say about the chosen bag?

Want to know \(p(m|w)\), the probability I picked each bag, given that the ball is white.
Inference — elementary example

Most probably (66%) I picked the bag with two white balls. Pretty obvious. Less intuitive if the proportions between bags are uneven.
Classic properties of estimators

- **Consistency** (in probability). Desirable that the estimator \(e(x) \) of \(m \) converges in probability to \(m \)

\[
\lim_{N \to \infty} \mathbb{P}(|m - e(x)| > \delta) = 0
\]

- **Precision.** Desirable that the variance of the estimator is minimal

\[
V(e(x)) = \langle |e(x) - \langle e(x) \rangle|^2 \rangle
\]

- **Bias.** Desirable that the estimator is unbiased (\(b(m) = 0 \))

\[
b(m) = \langle e(x) - m \rangle
\]

- **Distribution.** Desirable that the distribution \(p(e(x); m) \) of the estimator is simple (possibly Gaussian)
Comments — bias

Many estimators suffer from biases, which, in general, depend on the parameter \(m \) being estimated. For an estimator \(e(x) \) of \(m \), the bias \(b(m) \) is defined from

\[
E[e(x)] = \langle e(x) \rangle = m + b(m)
\]

Typically biases are small wrt the variance. Issues, however, arise in combinations of biased estimates: the variance reduces but the bias remains and weights more.

- If the distribution \(p(x|m) \) is known, the bias can be calculated explicitly.

- If the bias is independent of \(m \) (\(b(m) = b \)) then use another estimator \(u(x) = e(x) - b \), which is unbiased and has same precision (variance) of \(e(x) \).

- If the bias depend on \(m \), need an unbiased estimator of \(b \) (\(B(x) \)) to redefine \(u(x) = e(x) - B(x) \). The new estimator has greater variance than \(e(x) \), but loss in precision is often smaller than bias.
Example — bias correction w/ known distribution

I have N points x_i distributed as a Gaussian and use the following ML estimator to estimate its variance

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{x_i=1}^{N} (x_i - \bar{x})^2$$

This estimator has a bias $b = -\sigma^2/N$

and a variance $\text{Var}(\hat{\sigma}^2) = 2\sigma^4 \frac{N - 1}{N^2}$

So, I can rework an alternative estimator $s^2 = \frac{1}{N - 1} \sum_{x_i=1}^{N} (x_i - \bar{x})^2$

which has zero bias and a variance $\text{Var}(s^2) = 2\sigma^4 \frac{1}{N - 1}$ which is only $1/N^2$ larger than that of the previous estimator.
Example — biases w/ unknown distributions

In most practical cases, \(p(x|m) \) is not well known, or the bias is hard to calculate explicitly.

Biases are studied by repeating the measurement on simulated samples and comparing results with input “true” values or applying the estimator in control samples for which results are known.

If deviations \(\geq O(\text{variance}) \) occur, correcting the results of the measurement by subtracting the bias is dangerous. Need confidence that simulated experiments reproduce all features of the data (but then also the source of the bias could probably be with identified and removed).