

Bryan Webber
Cavendish Laboratory
University of Cambridge

Monte Carlo Event Generation

- Aim is to produce simulated (particle-level) datasets like those from real collider events
 - i.e. lists of particle identities, momenta, ...
 - simulate quantum effects by (pseudo)random numbers
- Essential for:
 - Designing new experiments and data analyses
 - Correcting for detector and selection effects
 - Testing the SM and measuring its parameters
 - * Estimating new signals and their backgrounds

Monte Carlo Basics

Monte Carlo Integration

Basis of all Monte Carlo methods:

$$I = \int_a^b f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^N (b-a) f(x_i) \equiv I_N$$
 weight w_i

where x_i are randomly (uniformly) distributed on [a,b].

• Then
$$I = \lim_{N \to \infty} I_N = E[w]$$
, $\sigma_I = \sqrt{\mathrm{Var}[w]/N}$

where
$$Var[w] = E[(w - E[w])^2] = E[w^2] - (E[w])^2$$

$$= (b-a) \int_{a}^{b} [f(x)]^{2} dx - \left[\int_{a}^{b} f(x) dx \right]^{2} \equiv V$$

$$I = I_N \pm \sqrt{V/N}$$
 Central limit theorem
$$P(<1\sigma) = 68\%$$

Central limit theorem:

$$P(<1\sigma) = 68\%$$

Convergence

ullet Monte Carlo integrals governed by Central Limit Theorem: error $\propto 1/\sqrt{N}$

c.f. trapezium rule
$$\propto 1/N^2$$

Simpson's rule $\propto 1/N^4$

and are finite, e.g.

$$\sqrt{1-x^2} \sim 1/N^{3/2}$$

Ν

$$I = \int_0^1 \sqrt{1 - x^2} \, dx = \frac{\pi}{4} = 0.785$$

$$\sqrt{V} = \sqrt{\frac{2}{3} - \frac{\pi^2}{16}} = 0.223$$

$$I = 0.785 \pm \frac{0.223}{\sqrt{N}}$$

Importance Sampling

- Convergence is improved by putting more points in regions where integrand is largest
- Corresponds to a Jacobian transformation
- Variance is reduced (weights "flattened")

$$I = \int_0^1 dx \cos \frac{\pi}{2} x$$

$$= 0.637 \pm 0.308 / \sqrt{N}$$

$$\frac{2}{\pi} \sqrt{\frac{1}{2} - \frac{4}{\pi^2}}$$

$$I = \int_0^1 dx (1 - x^2) \frac{\cos \frac{\pi}{2} x}{1 - x^2}$$

$$= \int_0^{2/3} \frac{\cos \frac{\pi}{2} x}{1 - x^2} [x(\rho)] \qquad \rho = x - \frac{x^3}{3}$$

$$= 0.637 \pm 0.032 / \sqrt{N}$$

Hit-and-Miss

- Accept points with probability = w_i/w_{max} (provided all $w_i \ge 0$)
- Accepted points are distributed like real events
- MC efficiency $\varepsilon_{MC} = E[w]/w_{max}$ improved by importance sampling

$$\varepsilon_{\mathrm{MC}} = 1/I = 2/\pi = 64\%$$

$$\sigma = \sqrt{\frac{\varepsilon_{\mathrm{MC}}(1 - \varepsilon_{\mathrm{MC}})}{N}} = \frac{0.48}{\sqrt{N}}$$

$$\varepsilon_{\text{MC}} = 1/I = 2/\pi = 64\%$$

$$\varepsilon_{\text{MC}} = \int_0^1 dx (1 - x^2)/I = 3/\pi = 95\%$$

$$\sigma = \sqrt{\frac{\varepsilon_{\text{MC}}(1 - \varepsilon_{\text{MC}})}{N}} = \frac{0.48}{\sqrt{N}}$$

$$\sigma = \sqrt{\frac{\varepsilon_{\text{MC}}(1 - \varepsilon_{\text{MC}})}{N}} = \frac{0.21}{\sqrt{N}}$$

Multi-dimensional Integration

- Formalism extends trivially to many dimensions
- Particle physics: very many dimensions,
 e.g. phase space = 3 dimensions per particles,
 LHC event ~ 250 hadrons.
- ullet Monte Carlo error remains $\propto 1/\sqrt{N}$
- ullet Trapezium rule $\propto 1/N^{2/d}$
- ullet Simpson's rule $\propto 1/N^{4/d}$

Monte Carlo: Summary

Disadvantages of Monte Carlo:

Slow convergence in few dimensions.

Advantages of Monte Carlo:

- Fast convergence in many dimensions.
- Arbitrarily complex integration regions (finite discontinuities not a problem).
- Few points needed to get first estimate ("feasibility limit").
- Every additional point improves accuracy ("growth rate").
- Easy error estimate.
- Hit-and-miss allows unweighted event generation, i.e. points distributed in phase space just like real events.

Phase Space Generation

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Pi_n(\sqrt{s})$$

$$\Gamma = \frac{1}{2M} \int |\mathcal{M}|^2 d\Pi_n(M)$$

Phase space:

$$d\Pi_n(M) = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 (2E_i)} \right] (2\pi)^4 \delta^{(4)} \left(p_0 - \sum_{i=1}^n p_i \right)$$

• Two-body easy:

$$d\Pi_2(M) = \frac{1}{8\pi} \frac{2p}{M} \frac{d\Omega}{4\pi}$$

Phase Space Generation

Other cases by recursive subdivision:

Or by 'democratic' algorithms: RAMBO, MAMBO
 Can be better, but matrix elements rarely flat.

Particle Decays

Simplest examplee.g. top quark decay:

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2 \theta_w} \right)^2 \frac{p_t \cdot p_\ell \ p_b \cdot p_\nu}{(m_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

$$\Gamma = \frac{1}{2M} \frac{1}{128\pi^3} \int |\mathcal{M}|^2 dm_W^2 \left(1 - \frac{m_W^2}{M^2} \right) \frac{d\Omega}{4\pi} \frac{d\Omega_W}{4\pi}$$

Breit-Wigner peak of W very strong - but can be removed by importance sampling:

$$m_W^2 o \arctan\left(\frac{m_W^2 - M_W^2}{\Gamma_W M_W}\right)$$
 (prove it!)

Associated Distributions

Big advantage of Monte Carlo integration:

- Simply histogram any associated quantities.
- Almost any other technique requires new integration for each observable.
- Can apply arbitrary cuts/ smearing.

e.g. lepton momentum in top decays:

Hadron-Hadron Cross Sections

- Consider e.g. $p \bar{p} \to Z^0 \to \ell^+ \ell^-$
- Integrations over incoming parton momentum distributions:

$$\sigma(s) = \int_0^1 dx_1 f(x_1) \int_0^1 dx_2 f(x_2) \,\hat{\sigma}(x_1 x_2 s)$$

• Hard process cross section $\hat{\sigma}(\hat{s})$ has strong peak, due to Z^0 resonance: needs importance sampling (like W in top decay)

$pp \rightarrow \ell^+\ell^-$ cross section

$$\hat{\sigma}_{q\bar{q}\to Z^0\to \ell^+\ell^-} = \frac{4\pi \hat{s}}{3M_Z^2} \frac{\Gamma_\ell \Gamma_q}{(\hat{s}-M_Z^2)^2 + \Gamma_Z^2 M_Z^2}$$

15

• "Background" is $q\bar{q} \to \gamma^* \to \ell^+\ell^-$

Parton-Level Monte Carlo Calculations

Now we have everything we need to make parton-level cross section calculations and distributions

Can be largely automated...

- MADGRAPH
- GRACE
- COMPHEP
- AMEGIC++
- ALPGEN

But...

- Fixed parton/jet multiplicity
- No control of large higher-order corrections
- Parton level
 - Need hadron level event generators

Monte Carlo Event Generation

Monte Carlo Event Generation

- Monte Carlo event generation:
 - * theoretical status and limitations
- Recent improvements:
 - perturbative and non-perturbative
- Overview of results:
 - W, Z, top, Higgs, BSM (+jets)

A high-mass dijet event

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

• $M_{jj} = 5.15 \text{ TeV}$

CMS PAS EXO-12-059

Theoretical Status

Theoretical Status

QCD Factorization

$$\sigma_{pp\to X}(E_{pp}^2) = \int_0^1 dx_1\,dx_2\,f_i(x_1,\mu^2)\,f_j(x_2,\mu^2)\,\hat{\sigma}_{ij\to X}(x_1x_2E_{pp}^2,\mu^2)$$
 momentum parton hard process fractions distributions at scale μ^2

- Jet formation and underlying event take place over a much longer time scale, with unit probability
- Hence they cannot affect the cross section
- Scale dependences of parton distributions and hard process cross section are perturbatively calculable, and cancel order by order

Parton Shower Approximation

• Keep only most singular parts of QCD matrix elements:

• Collinear
$$d\sigma_{n+1} \approx \frac{\alpha_S}{2\pi} \sum_i P_{ii}(z_i, \phi_i) dz_i \frac{d\xi_i}{\xi_i} \frac{d\phi_i}{2\pi} d\sigma_n$$
 $\xi_i = 1 - \cos\theta_i$

• Soft
$$d\sigma_{n+1} \approx \frac{\alpha_{\rm S}}{2\pi} \sum_{i,j} (-\mathbf{T}_i \cdot \mathbf{T}_j) \frac{p_i \cdot p_j}{p_i \cdot k \, p_j \cdot k} \omega \, d\omega \, d\xi_i \, \frac{d\phi_i}{2\pi} d\sigma_n$$

$$= \frac{\alpha_{\rm S}}{2\pi} \sum_{i,j} (-\mathbf{T}_i \cdot \mathbf{T}_j) \frac{\xi_{ij}}{\xi_i \, \xi_j} \frac{d\omega}{\omega} d\xi_i \, \frac{d\phi_i}{2\pi} d\sigma_n$$

$$\approx \frac{\alpha_{\rm S}}{2\pi} \sum_{i,j} (-\mathbf{T}_i \cdot \mathbf{T}_j) \, \Theta(\xi_{ij} - \xi_i) \frac{d\omega}{\omega} \frac{d\xi_i}{\xi_i} d\sigma_n$$

Angular-ordered parton shower (or dipoles)

Parton Shower Evolution

Parton Shower Evolution

 E_0

Bryan Webber

Sudakov Factor

• $\Delta_i(Q,Q_{min})$ = probability for parton i to evolve from Q to Q_{min} without any resolvable emissions:

$$\Delta_{i}(Q_{0}, Q_{\min}) \approx 1 - C_{i} \frac{\alpha_{S}}{\pi} \int^{E_{0}} \frac{d\omega}{\omega} \int^{\theta_{0}} 2\frac{d\theta}{\theta} \Theta(\omega\theta - Q_{\min}) + \dots$$

$$\approx 1 - C_{i} \frac{\alpha_{S}}{\pi} \ln^{2} \left(\frac{Q_{0}}{Q_{\min}}\right) + \dots$$

$$\approx \exp\left[-C_{i} \frac{\alpha_{S}}{\pi} \ln^{2} \left(\frac{Q_{0}}{Q_{\min}}\right)\right]$$

- $C_q = C_F = 4/3$, $C_g = C_A = 3$
- Then probability to evolve from Q_1 to Q_2 without resolvable emissions is $\Delta_i(Q_1,Q_{min})/\Delta_i(Q_2,Q_{min})$
- Given Q_1 , find Q_2 by solving

$$\Delta_i(Q_1,Q_{min})/\Delta_i(Q_2,Q_{min}) = Random #$$

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{QCD}\sim200$ MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few x Λ_{QCD} , there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{QCD}\sim200$ MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few x Λ_{QCD} , there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{QCD}\sim200$ MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{QCD}\sim200$ MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few x Λ_{QCD} , there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower

String Hadronization Model

- At short distances (large Q), QCD is like QED: colour field lines spread out (1/r potential)
- At long distances, gluon self-attraction gives rise to colour string (linear potential, quark confinement)

Intense colour field induces quark-antiquark pair creation:

hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few x Λ_{QCD} , there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- Mass distribution of preconfined clusters is universal
- Phase-space decay model for most clusters
- High-mass tail decays anisotropically (string-like)

Hadronization Status

- No fundamental progress since 1980s
 - Available non-perturbative methods (lattice, AdS/QCD, ...) are not applicable
- Less important in some respects in LHC era
 - Jets, leptons and photons are observed objects, not hadrons
- But still important for detector effects
 - Jet response, heavy-flavour tagging, lepton and photon isolation, ...

Underlying Event (MPI)

- Multiple parton interactions in same collision
 - Depends on density profile of proton
- Assume QCD 2-to-2 secondary collisions
 - Need cutoff at low p_T
- Need to model colour flow
 - Colour reconnections are necessary

Underlying Event

ATLAS, JHEP 03(2017)157

Colour Reconnection

- "Colour length" $\lambda \equiv \sum_{i=1}^{N_{\rm cl}} m_i^2$ reduced by reconnection
- Massive leading clusters reduced
- Similar need in string model

Gieseke, Röhr, Siódmok, EPJC72(2012)2225

Event Generators

HERWIG

http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- → v6 Fortran; Herwig++
- PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

- → Dipole-type parton shower, string hadronization
- → v6 Fortran; v8 C++
- SHERPA

http://projects.hepforge.org/sherpa/

- Dipole-type parton shower, cluster hadronization
- **→** C++

"General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

Generator Citations

- Most-cited article only for each version
- 2017 is extrapolation (Jan to July x12/7)

Other relevant software

(with apologies for omissions)

- Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia
- Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep, Helac, Whizard, Sherpa, GoSam, aMC@NLO
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Sjöstrand, Nobel Symposium, May 2013

Parton Shower Monte Carlo

• Hard subprocess: $q \bar{q} \to Z^0/W^{\pm}$

http://mcplots.cern.ch/

- Leading-order (LO) normalization need next-to-LO (NLO)
- Worse for high p_T and/or extra jets \longrightarrow need multijet merging

Summary on Event Generators

- Fairly good overall description of data, but...
- Hard subprocess: LO no longer adequate
- Parton showers: need matching to NLO
 - Also multijet merging
 - NLO showering?
- Hadronization: string and cluster models
 - Need new ideas/methods
- Underlying event due to multiple interactions
 - Colour reconnection necessary