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What is the p-value plot? What is the local p-value? 
What is the look-elsewhere-effect?
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What does the “Brazil plot” mean? What is CLs?



Confidence intervals
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Confidence intervals
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Mathematical procedure to address the question: 


Given a model p(x|m), with unknown m, and observed data x0, what are the values 
of m for which the observed value x0  is among the least extreme of all possible 
values of x? 



Confidence intervals
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What are the values of m for which the observed value x0  is among the least 
extreme possible values of x?                                                                                                                       

To define “extreme”, need an ordering principle. Rank the values of x for each 
possible value of m.  High rank means not extreme (likely to be included in the 
interval). Low rank means extreme (likely to be outside of the interval).


With that ordering, accumulate the values of highest-ranked (i.e., less extreme) 
values of x until you reach a predetermined fraction of x probability. Such fraction 
is the confidence level (CL). Typically 68%, 95%…


Given a model p(x|m), data x0, an ordering, and a CL, the confidence interval [m1, 
m2] includes those values of m for which x0  aren’t “extreme” at the chosen CL


For example: [m1, m2 ] determined at 68% CL includes the values of m for which 
the observed data x0 belongs to the least extreme 68% values of x




One-sided, two-sided.
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If “extreme” is defined as low-valued x, start 
accumulating from high values of x.  Yields 
one-sided interval (upper limit on m)

If “extreme” is defined as high-valued x, start 
accumulating from low values of x. Yields one-
sided interval (lower limit on m)

If “extremes” are high- and low-valued x, take 
the smallest central quantile. Yields central  
interval (lower limit on m)

(simplified interpretation applies only to one-dimensional x, and p(x|m) is such 
that higher values of m imply higher average x) 



CL

8

The confidence level is usually chosen to match the standard thresholds 68.3% 
(1σ) 95.5% (2σ) etc. Define also the lowest-ranked α = 1- CL fraction of the most 
extreme values


The endpoints of a central confidence interval at given CL can be determined from 
one-sided confidence intervals (lower and upper limits) at CL/2


A CL=84% upper limit m2  excludes m values for which x0  belongs to the set of 
lowest-valued that has 16% (1-CL)  probability


A CL=84% lower limit m1  excludes m values for which x0  belongs to the set of 
highest-valued x set that has 16% (1-CL)  probability


Then [m1, m2] includes the central 68% fraction of x values ordered from high to 
low: a 1-(16%+16%) = 68% central confidence interval  



Confidence intervals
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Confidence intervals
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Suppose we observe 3 successes on 10 trials. What is our efficiency and its 
uncertainty?


It is tempting to replace ρ̂ = 0.30 into σ̂ = (1/ntot)√ρ̂(1-ρ̂) and obtain the interval 
[ρ₁, ρ₂] = ρ̂ ± σ̂   


This is not a confidence interval since it does not follow the proper logic of a 
frequentist inference. In the construction of the interval each σ should be 
consistently associated with each ρ 


This is manifest for the cases in which non = ntot  or non = 0.    



Confidence intervals
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Confidence intervals
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Neyman construction 
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J. Neyman came up with a mathematically rigorous procedure 
that allows constructing confidence intervals with the desired 
level of coverage


Jerzy Neyman (1894-1981)



Neyman construction illustrated
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Prior to looking at data, for each possible true value of parameter m, consider 
p(x|m). Its shape can vary as a function of m.

m0

m1

m2

p(x|m)

m

[Cranmer]



Neyman illustrated I
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Take a specific value m0 of the parameter 

p(x|m0)

[Cranmer]



Neyman illustrated II
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p(x|m0)

Use p(x|m0) to define an acceptance range in x, such that p(x ∈ range | m0) = 68%.

68%

[Cranmer][Cranmer]



Neyman illustrated III
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p(x|m0)

The definition of the acceptance range is not unique


The criterion to choose of the region is chosen is the ordering rule  

The rule defining the order of accumulation of the elements along x until the 
desired amount of probability, corresponding to the chosen confidence level (68%, 
in our example), is accumulated. 

68% 32%

[Cranmer]



Neyman illustrated V
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p(x|m)

m

m0

m1

m2

Derive the acceptance region for every possible true value of the parameter m

[Cranmer]



Neyman illustrated VI
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This defines a confidence belt for m.

m

m2

m1

m0

p(x|m)

[Cranmer]



Neyman illustrated VII
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m

m0

m�

m+

Then you do your analysis on data, and observe a value x0. The observed value 
intersects the confidence belt. The union of all values of m for which acceptance 
ranges are intersected by the measurement defines the confidence interval [m₋(x) 
m₊(x)] at the 68% CL for the parameter. Note that the extremes of the interval are 
random variables (functions of data x)

In repeated experiments, the confidence intervals will have different boundaries, but 
68% of them will contain the (unknown) true value of the parameter m

[Cranmer]



Why does it work?
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Make a measurement x0 and determine the corresponding confidence interval, For 
every true value m of the parameter, say m2, included in the interval, 68% of the 
measurements would be in the acceptance region. Each of the measurements will 
lead to a confidence interval that contains m2 . Hence, the interval contains the true 
value with 68% probability, m ∈ [m₋, m₊] at the 68% CL.

x

m2

m�

m+

x0[Cranmer]

“projection of the 
acceptance region 
onto the space of 
parameters”  — a 
set-theory union, not 
an integral.



Toy example
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Bags of various classes: each class contains a different fraction of white balls 
(1%, 5%, 50%, 95%, and 99%). Extract 5 balls from a bag and infer to which 
class the bag belongs 

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls
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Note
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m

m0

m�

m+

For simplification purposes, examples discussed have one-dimensional space of 
parameter and one-dimensional space of observables and p(x|m) such that the 
higher the m the higher the x.

In general, x and m are x⃗ and m⃗ and they need not to have same ranges, units, or 
dimensionality



“Non-physical” ranges
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It’s frequent to get confused about the ranges for the confidence band 
construction. 


Example: meaurement of a small mass m. 
using a Gaussian p(x|m) with x observed 
mass.


Keep distinct 


• data x which, due to resolution, could 
fluctuate negative


• the mass parameter m, for which 
negative values do not exist in the model

[Cousins]

Observed 
mass can 
fluctuate 
negative 

Model 
parameter 
mass cannot



Ordering
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The ordering algorithm is arbitrarily chosen, provided that (i) has been defined 
prior to look at the data (ii) for each value m of the parameter, the integral of the 
pdf along the x region outside of the belt does not exceed 1-CL. 

m

m0

m2

Z

x/2 belt
p(x|m2)dx  0.05

[Cranmer]



Probability ordering
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In the past, many tried to get the shortest possible interval, so that the resulting 
confidence intervals were likely narrower yielding more precise measurements. (this is 
the probability ordering or “Crow-Gardner ordering”)

p(x|m0)

This is ill-defined: as probability depends on the metric for the observable x, the 
shortest interval in one metric isn’t shortest in others.

1. Choose one value for m, m0, and look at p(x|m0)


2. Rank the x values in decreasing order of p(x|m0)


3. Accumulate x starting from the x with highest probability


4. Accumulate all other x until the desired CL is reached.


5. Repeat for all m



Issues
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Central 90% CL band for a 
Gaussian of unit width

Central 90% CL band for a 
Poisson with unknown mean 

and background b=0.3

 The resulting confidence regions are empty, which is clearly indicative of a problem.  

Long-standing inconsistencies found in Neyman constructions based on 
simplistic ordering criteria (i) Gaussian measurement resolution near a physical 
boundary (e.g., like a measurement of neutrino mass square close to zero)  (ii) 
measurements of a Poisson signal in the presence of background when 
observed number of events fluctuates below the expected background count.

What if one 
observes         
x = -1.8?              
or n = 0?



Likelihood-ratio ordering (“Feldman and Cousins”)

Those issues were solved by adapting a more ordering, 
based on the likelihood ratio

m

m2

m1

m0

p(x|m)

The “accumulation score” of each element in x, no longer depends only on p(x|
m0) but also on p(x|m) at other m values 

LR =
p(x|m0)

p(x|m̂)

x

p(x|m0)

p(x|m̂)

Choose a value m0 of the parameter 
and for each x calculate

[Cranmer]



Likelihood-ratio ordering
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1. Choose one value for m, m0  and generate simulated pseudodata accordingly.


2. For each observation x calculate (i) the value of the likelihood at m0, p(x|m0)=L(m0) and (ii) the 
maximum likelihood L(m̂) over the space of m values.


3. Rank all x in decreasing order of likelihood ratio LR=Lx(m0)/Lx(m̂).


4. Accumulate starting from the x with higher LR until the desired CL is reached.


5. Repeat for all m

As the likelihood is metric-invariant so is the ratio of likelihoods. Therefore LR-
ordering preserves the metric, mostly avoids empty confidence regions and has 
several other attractive features. By far the most popular ordering in HEP. 


Take LR-ordering as default option unless there are strong motivations against it. 



Likelihood-ratio ordering practice
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It is instructive to trying to reproduce LR bands as per the original paper. http://
arxiv.org/pdf/physics/9711021v2.pdf. Further useful and interesting info in 
http://users.physics.harvard.edu/~feldman/Journeys.pdf 


Observed 
count

Likelihood ratio 
L(μ =0.5)/L(μ̂ )        
(ordering score)

Can use this for Poisson http://stats.areppim.com/calc/calc_poisson.php

L(μ =0.5) 
of  

observed 
count

μ̂  that  
maximizes L 
of observed 

count

L(μ̂ )        
of  

observed 
count

http://arxiv.org/pdf/physics/9711021v2.pdf
http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf


Real life — high dimensions
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In most real problems likelihoods are complicated multidimensional functions 
that cannot be analytically maximized. Two main issues:

Constructing confidence intervals is a significant computing 
burden: for each test value of the parameter m, (i) generate 
many samples of pseudodata, (ii) fit, and (iii) then move to 
another m value etc.. Diverges quickly with dimensionality 

With highly-dimensional likelihoods the “projection” of the full-dimensional 
confidence band into the lower-dimensional subspace of interest leads to 
information loss: structure in the full dimensional space is lost when projected.                                                                                                                      
The resulting confidence interval is bigger (less precise results).



Real life — nuisance parameters
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In most problems, systematic uncertainties complicate the interval determination 
Neither Neyman nor Feldman-Cousins have a prescription for that. 


Parametrize the uncertainty in the shape of the model by unknown nuisance 
parameters. Not interesting for the measurement but do influence the result.


Typically cannot define a probability distribution for s (otherwise they’d be part of 
the model) but just a range. Goal: a procedure that guarantees coverage whatever 
is the value of the nuisance parameters within such ranges


Rigorous frequentist confidence intervals in the presence of nuisance parameters 
is a complicated problem for which no universal prescription yet exists.

p(~x|~m) ) p(~x|~m,~s)

Assumed model Reality

Nuisance 
parameters of 

unknown values 
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A promising approach: profile-likelihood-ratio (PLR) ordering.


FC ratio-ordering applied to likelihoods profiled (i.e., maximized) with respect to 
the uninteresting parameters.  The profile-likelihood is not a likelihood. It is a lower-
dimensional derivation of it obtained by maximizing the likelihood wrt to the 
nuisance parameters. However, it preserves some of the nice features of the 
likelihood ratio: its asymptotic distribution is known and independent of m

Profile-likelihood ratio ordering

Variable Meaning

m Parameters of interest (”physics parameters”)

s Nuisance parameters

m̂, ŝ Parameters that maximize L(x|m, s)

ŝ

⇤
Parameter that maximizes L(x|m = m0, s)

PLR = L(x|m=m0,ŝ
⇤)

L(x|m̂,ŝ)
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In practice

1. Choose one value m0 for m and one value s0  for s, and generate pseudodata x accordingly


2. For each sample x (i) maximize p(x|m=m0,s)=L(m=m0,s) with respect to s to get L(m=m0,ŝ*) and 
(ii) maximize the likelihood L(m,s) over the space of m and s to obtain L(m̂,ŝ)


3. Rank all x in decreasing order of profile likelihood ratio PLR=L(m=m0,ŝ*)/L(m̂,ŝ)


4. Start from the x with higher PLR and accumulate the others until the desired CL is reached.


5. Repeat for all values of m


6. [Repeat for values of s sampled in a the whole range]

Generate pseudodata that sample the full multidimensional space of the parameters.  
fitt each sample twice, one with all parameters (physics and nuisance) floating, and 
another one with physics parameters fixed to their test value m0.  

Step 6 is essential to ensure the procedure has coverage for all values of the 
nuisance parameters.                                                                                     
Sometimes circumvented using the “plugin method”: only generate pseudodata at 
the s values estimated on data. Likely to spoil coverage
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Sampling the nuisance parameter space
Perform the procedure on a sufficient sampling of 
the full space of s⃗ is expensive.


Midway between simplistic plugin and full 
treatment: restrict the sampling of the s⃗ parameter 
space to a plausible subvolume centered on their 
estimates in data.  


E.g., Berger and Boos: sample along each 
dimension si  a range around the estimated value ŝ 
with CL much larger than the target CL of the 
profile-likelihood interval. (e.g, when constructing 
a 68% CL band in m, sample a 99.7% CL range in 
each dimension in s space)
JASA, 89, 427 (1994)

Application in a 27-dimensional case


https://arxiv.org/pdf/0810.3229.pdf      
Phys. Rev. Lett 100 161802,                                                 
Phys Rev D 85, 072002                                                   
Phys. Rev. Lett. 109, 171802,                                                

Comprehensive review of treatment of nuisance parameters: Sec 4 in www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

https://arxiv.org/pdf/0810.3229.pdf
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The main burden

By this point you probably have realized that in a confidence interval 
construction, most of the time and effort is spent in generating a fitting simulated 
data sampled from p(x|m).  Effort and the time needed when likelihoods are 
highly multidimensional can be disconcerting.


Any way of avoiding this?
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Wilks' theorem
Asymptotically (large N), the distribution of the likelihood ratio


approaches a χ² distribution with # of degrees of freedom equal 
to # of additional free parameters in the denominator wrt the 
numerator Samuel S. Wilks (1906-1964)


This holds independently of the shape of p(x|m) and on the value of m.


Great helps in usage of  likelihood- and profile-likelihood-ratio as ordering quantities 
in the construction of intervals. If the likelihood is regular enough to be in asymptotic 
regime, one can avoid massive production of simulated experiments.

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
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Wilks' theorem

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)

1 additional parameter in p(x|m) wrt to p(x|m0)

2 additional parameters in p(x|m) wrt to p(x|m0)

3 additional parameters in p(x|m) wrt to p(x|m0)
4 additional parameters

5 additional parameters

How do I know if L is asymptotic? Look at a few samples of pseudodata, and 
compare with above.

No need to generate the sampling 
distributions of the ordering 
statistic. 


Just look at where the (profile)-
likelihood ratio observed in my 
data falls along the appropriate 
curve (determined by the number 
of degrees of freedom)
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Wilks' theorem at work — MINOS

When L(m0,ŝm)/L(m̂,ŝ) equals the threshold values 
tabulated from the χ² distribution the 
corresponding projection of the profile-likelihood 
onto the m space approximates (large N) a 
Feldman-Cousins central confidence interval 

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
= �

�
�

CL
CL

“projection” onto the space of parameters of a 3-dimensional 
likelihood at the point where -2lnLR varies by 6.25 units 

identifies a 3-dimensional 90%CL central interval

“projection” onto the space of parameters of a 1(2)-
dimensional likelihood at the point where -2lnLR varies by 1.0 
units identifies a 1(2)-dimensional 68(39)% CL central interval

Moves down from the maximum L(m̂,ŝ) evaluating L(m0,ŝm) at each point m0 by 
maximizing wrt parameters s⃗ (i.e., likelihood of m profiled wrt s⃗).          
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The Asimov asymptotic formulas
Significant recent breakthrough allows generalizing the Wilks theorem and 
provides key asymptotic formulas for the distributions of profile likelihood ratios 
used in confidence intervals and hypothesis tests.



Hypothesis testing

41



42

Are my data compatible with background?
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Or they suggest the presence of a signal?

The p-value is a random variable that helps answering this question                                                                    
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/

http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/
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Ingredients

Need two hypotheses. only known phenomena contribute“null” or “background” ) 
new phenomena contribute too (“alternate” or “signal”)

Devise a function x of the data (e.g., signal-event count), whose distribution under 
the null p(x|b) “differs” from that under the signal hypothesis p(x|s+b).  Generate 
these two distributions (labor intensive — typically done using simulation) 


Set, prior to the observation, the false-positive rate: how much “signal-like” the 
observed value of x should be to exclude the background only hypothesis. 

Arbitrary function x of the data that allows separating between the two hypotheses

Di
st

rib
ut

io
n 

of
 x p(x|b) p(x|s+b)
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p-values for discovering a new effect
Observe xobs. The location of xobs  relative to the two pdf offers a quantitative 
measure of data compatibility with either hypotheses.


p-value: relative fraction of the integral of the null model over values of x as signal-
like as those observed and more. The smaller the p-value, the stronger the 
evidence against the null hypothesis. If p-value < false-positive rate, exclude the 
background-only hypothesis at CL = 1-(p-value).

Arbitrary function x of the data that allows for separation between the two hypotheses

Di
st

rib
ut

io
n 

of
 x xobsp(x|b) p(x|s+b)

p-value of the data 
with respect to the 

null hypothesis 
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p-values for excluding a new effect
If the purpose is to exclude a new effect, then one tests the signal hypothesis, and 
quotes the p-value with respect to that.


Is the relative fraction of the integral of the signal model over values of x as 
background-like as that observed and more. The smaller the p-value, the stronger 
the evidence against the signal hypothesis.

Arbitrary function x of the data that allows for separation between the two hypotheses

Di
st

rib
ut

io
n 

of
 x xobs p(x|s+b)p(x|b)

p-value of the data with respect 
to the signal hypothesis 
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Testing the Popperian way

Cannot prove that an hypothesis is true, only that it’s false.


“Discover” a signal by excluding its absence (that is, by excluding 
that only background contributes).  Limit to the existence of a signal 
by excluding is presence.


Karl Popper (1902-1994)

A p-value is not a probability!  It is a random variable (function of the data) that is 
distributed uniformly if the tested hypothesis is true.


It does not express the probability that an hypothesis is true or false!                  
Wrong claim “The measurement shows that the probability for hypothesis blah is ..”                                                                                                                             


P-values connect to the probability to observe xobs or a more extreme value if a 
specific hypothesis were true. Proper claim: “Assuming that the hypothesis blah 
holds, the probability to observe a fluctuation as extreme as that observed in our 
data or more is…”
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Nomenclature

This is x, 
whatever 

function of 
data whose 
distribution 
is sensitive 
to separate 
H0 from H1

x

This is p(x|b), the distribution of x under the 
null hypothesis

This is p(x|s+b), the distribution of x under the 
signal hypothesis

Symbol Meaning

↵ Rate of false positives (Type I error: reject H0, while it was true)

� Rate of false negatives (Type II error: reject H1, while it was true)

1� � Power of the test
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“Significance”
“At how many sigma such and such result is significant?” 


The “number of sigma” (or z-value) is just a remapping of p-values into integrals of 
one tail of a Gaussian.  It expresses by how many sigma from the mean my 
observation would be if the test statistic x would be distributed as Gaussian

[Cowan]
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p-values in mass peak
Suppose you measure a value x for each 
event and bin the resulting distribution.


The count in each bin is a Poisson 
random variable, whose mean in the H0 
hypothesis is given by the dashed line


Observe a peak of 11 events in the 
central bins, with expected background 
3.2 events.

P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5*10-4


Is this evaluation fair or biased?
[Cowan]
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“Local” p-value and “look-elsewhere effect” 

That evaluation only accounts for the chances of a 
upward fluctuation in that very position at x~9.  
That’s the “local p-value”. 


“global p-value” need to account for the chances 
that an excess could have arisen in any pair of 
adjacent bins.  With 20 bins (10 pairs of adjacent 
bins) the local p-value gets multiplied by ≈10.

The larger the size of the test space, the higher the probabilities to observe rare 
fluctuations. 


When quoting p-values, need to correct for the effect of multiple testing (i.e., 
account that we have also been “looking elsewhere” from where the anomaly is). 


Use simulation, or approximate correction factors, e.g., in EPJ C70, 525 (2010)

Peak could have been 
observed here

..or here
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The conventional “5σ rationale”

HEP experimenters conventionally agree to deal with the LEE by setting a rather 
extreme standard for p-values to justify claims of new effects. (Originated by a 
survey of experimental results on “far-out hadrons” in 1968 — see backup)


One requires the null to be rejected with significance of 3.5σ (for “evidence”) and 
5σ (“observation”), corresponding to very small p-values (fluctuations that occur 3 
times every 10 million trials). 


The loose rationale is that such high thresholds should protect from the effects 
above. 


However, one-size-fits-all does not seem appropriate here.



Which function of the observables x to choose?
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Back to p-values. 


Can we exploit the arbitrariness in choosing the 
test quantity x?  Can we devise a function of the 
observables x that maximizes the power of my 
test at fixed false-positive rate. 


Pretty obvious in simple counting experiments. 
Less obvious in multiple-dimensional nonlinear 
problems



Neyman-Pearson lemma
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It does exist an universal statistic for optimal separation 
between the two hypotheses (for simple completely 
specified hypotheses)


Ratio between the likelihood for the signal+background 
hypothesis (H1) and the likelihood for the background-only 
hypothesis (H0) Jerzy Neyman 

(1894-1981)
Egon S. Pearson 

(1885-1980)

p(x|H1

p(x|H0)
> k↵

The region W of acceptance of the null which minimises the probability to accept 
the null when the signal hypothesis is true is the contour


Any region that has the same false-positive rate would have higher rate of false 
negatives (technically, less power)



NP-lemma illustrated proof 

55

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Take a contour of the likelihood ratio that has a given rate α of false positives, that is 
a given probability under H0

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]

p(x|b) p(x|s+b)p(x|b)p(x|b)

W

p(x|b) p(x|s+b)p(x|b)p(x|b)

Wc



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



NP-lemma illustration 
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Because the region gained with the new contour was outside of the likelihood ratio 
contour and the region lost lost was inside it, the hierarchy between probabilities 
under H0 and H1 in the two regions is inverted.
Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



(profile) likelihood-ratio as a test statistic
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Convenient because (1) has optimal performance and (2) allows for testing with no 
need to laboriously construct distributions by generating and fitting pseudodata 
since its large-sample distribution is known (χ²)

1. Fit data under H0: i.e. with a likelihood 
that only has “background” parameters.


2. Fit data under H1: i.e. with a likelihood 
that includes n additional “signal” free 
parameters


3. The ratio between the resulting values of 
the likelihood functions at their maxima 
is distributed as a χ² with n degrees of 
freedom.


4. Comparison of the ratio obtained in 
data with the relevant χ² distribution 
allows for testing H1 vs H0.

χ²
LR observed in data

fit under H0fit under H1

[Cranmer]



Issues with p-values
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Possible to get an observation 
that rejects both the null and the 

signal hypotheses

For small signals with poor S-vs-B 
separation, sensitivity is low, which 

means that distributions of test statistics 
are nearly equal. Can make no statement 

about the signal, regardless of the 
outcome[Junk]

x x

p(x|s+b)p(x|b)



Spurious exclusion
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signal-like bckg-like

p(x|s+b)
p(x|b)

p-value of s+bp-value of b

Use the likelihood ratio x to test the presence 
of a signal p(x|s+b).


Typically, if p-value of the hypothesis s+b is 
smaller than 5%, signal gets excluded with 
95% CL.


However, when the distributions of the test 
statistic are similar, (1-pvalue) of the 
background hypothesis is just marginally 
higher than p-value of s+b. x



The CLs method
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signal-like bckg-like
Scaling the p-value prevents from excluding 
hypotheses to which there is no sensitivity.


Base test on the pvalue for the s+b hypothesis 
scaled by (1-pvalue of b). Exclude only if 


CLs = [pvalue for s+b] / [1 - pvalue of b]


is small. Denominator increases the CLs thus 
preventing excluding signals for which there is 
no sensitivity.

p(x|s+b)
p(x|b)

p-value of s+bp-value of b

When quoting limits, it’s good practice to assess the analysis sensitivity in terms of 
median expected limits based on ensembles of simulated experiments or asymptotic 
formulae if applicable to your case 

x



Duality
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

Given an ordering, there is a one-to-one correspondence between hypothesis 
testing and construction of confidence intervals.


It is the same problem.


Testying if parameter m equals m0 or rather any other value, with a chosen 
false-positive rate = pvalue, corresponds to checking if m0  is included in the 
confidence interval for m with CL=1-(pvalue) 


Subtends why the likelihood-ratio based ordering of Feldman and Cousins is a 
generalized and powerful criterion for construction of confidence intervals, 
thansk to the NP-lemma.
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Additional material



Confidence intervals
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Minimum χ2 for a single observation of 10, yields μ̂ = 10. Then 
estimate σ̂ = 0.2 × μ̂ = 0.2 × 10 = 2.0


Therefore μ̂ ± σ̂ = [8.0, 12.0]
[Cousins]



Confidence intervals
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Confidence intervals
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LEE at Fermilab, the “Oops-Leon” discovery
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Leon Lederman in the ’60-’70 led many of the 
key experiments that laid the foundations of 
the standard model. 

In 1976, Lederman’s group 
announced the 
observation of a new 
particle produced in 
collisions of protons on 
Beryllium and decaying 
into e+ e- pairs, with a 
mass of about 6 GeV. 



The “Oops-Leon” particle

69

This was published and provided a very strong 
candidate for the Upsilon, the bound state of a 
(then still unobserved) fifth quark.


More data did not confirm the finding.


The erroneous first claim has been later tracked 
down to a mistake in the statistical evaluation of 
the significance of the signal, which did not 
properly account for the LEE. 

Invariant ee mass



PS
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A couple of years later, the same group 
using muon pairs found the actual Upsilon 
meson, at 9.5 GeV.              


Nobody cared too much about the 6 GeV 
fluke, which someone dubbed “Oops-
Leon” in a pun over Lederman’s and the 
Upsilon’s name.
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Where is “elsewhere”?

Tenths, or hundreds, or thousands of 
distributions may have been inspected, in the 
same analysis or in other analyses.


Should we correct for these as well? 


How large is the testing space to base our 
correction on?   


Should we go back and correct previously published p-values when new 
analyses are completed?


Guidance (consensus at the Banff 2010 Statistics Workshop):  limit the testing 
space to models that are inspected within a single published analysis
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Far-out hadrons

In 1968, Art H. Rosenfeld at UC Berkeley 
surveyed the searches for exotic hadrons that did 
not fit the then-new static quark model.


He noted that the number of discovery claims 
quite matched with the number of statistical 
fluctuations expected in the data sets analyzed.


“[...]	This	reasoning	on	mul3plici3es,	extended	to	all	combina3ons	of	all	outgoing	par3cles	and	to	all	countries,	leads	to	
an	es3mate	of	35	million	mass	combina3ons	calculated	per	year.	How	many	histograms	are	ploAed	from	these	35	
million	combina3ons?	A	glance	through	the	journals	shows	that	a	typical	mass	histogram	has	about	2,500	entries,	so	
the	number	we	were	looking	for,	h	is	then	15,000	histograms	per	year.	[...]	Our	typical	2,500	entry	histogram	seems	to	
average	40	bins.	This	means	that	therein	a	physicist	could	observe	40	different	fluctua3ons	one	bin	wide,	39	two	bins	
wide,	38	three	bins	wide...	This	arithme3c	is	made	worse	by	the	fact	that	when	a	physicist	sees	'something',	he	then	
tries	to	enhance	it	by	making	cuts...”	

”	

Rosenfeld blamed the large mutliple testing corrections needed to account for the 
massive use of combination of observed particles to construct mass spectra 
containing potential exotic excesses.

[Dorigo]

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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Far-out hadrons

“In	summary	of	all	the	discussion	above,	I	conclude	that	each	of	our	150,000	annual	histograms	is	capable	
of	genera3ng	somewhere	between	10	and	100	decep3ve	upward	fluctua3ons	[…]	To	the	theorist	or	
phenomenologist	the	moral	is	simple:	wait	for	nearly	5σ	effects.	For	the	experimental	group	who	has	
spent	a	year	of	their	3me	and	perhaps	a	million		 dollars,	the	problem	is	harder...	go	ahead	and	
publish...	but	they	should	realize	that	any	bump	less	than	about	5σ	calls	for	a	repeat	of	the	experiment.”

Rosenfeld also mentions the semiserious GAME test by his colleague, 
Gerry Lynch
“My	colleague	Gerry	Lynch	has	instead	tried	to	study	this	problem	‘experimentally’	using	a	‘Las	Vegas’	computer	program	

called	Game.	Game	is	played	as	follows.	You	wait	un3l	a	unsuspec3ng	friend	comes	to	show	you	his	latest	4-sigma	
peak.	You	draw	a	smooth	curve	through	his	data	(based	on	the	hypothesis	that	the	peak	is	just	a	fluctua3on),	and	
punch	this	smooth	curve	as	one	of	the	inputs	for	Game.	The	other	input	is	his	actual	data.	If	you	then	call	for	100	Las	
Vegas	histograms,	Game	will	generate	them,	with	the	actual	data	reproduced	for	comparison	at	some	random	page.	
You	and	your	friend	then	go	around	the	halls,	asking	physicists	to	pick	out	the	most	surprising	histogram	in	the	
printout.	Oben	it	is	one	of	the	100	phoneys,	rather	than	the	real	‘4-sigma’	peak.”	

[Dorigo]


