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What is the p-value plot? What is the local p-value?
What is the look-elsewhere-effect”?

2011 + 2012 Data

\s=7TeV: |Ldt=4.6-48fb"
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What does the “Brazil plot” mean”? What is CLs"”
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Confidence intervals



Confidence intervals

Mathematical procedure to address the question:

Given a model p(x|m), with unknown m, and observed data xo, what are the values
of m for which the observed value xo is among the least extreme of all possible

values of x?



Confidence intervals

What are the values of m for which the observed value xo Is among the least
extreme possible values of x?

To define “extreme”, need an ordering principle. Rank the values of x for each
possible value of m. High rank means not extreme (likely to be included in the
interval). Low rank means extreme (likely to be outside of the interval).

With that ordering, accumulate the values of highest-ranked (i.e., less extreme)
values of x until you reach a predetermined fraction of x probability. Such fraction
is the confidence level (CL). Typically 68%, 95%...

Given a model p(x|m), data xo, an ordering, and a CL, the confidence interval [m1,
m2] includes those values of m for which xo aren’t “extreme” at the chosen CL

For example: [m1, m2 | determined at 68% CL includes the values of m for which
the observed data xo belongs to the least extreme 68% values of x



One-sided, two-sided.

f(|6o) If “extreme” is defined as low-valued x, start

/l« accumulating from high values of x. Yields

one-sided interval (upper limit on m)

f(=|6o) If “extreme” is defined as high-valued x, start

accumulating from low values of x. Yields one-
sided interval (lower limit on m)

f(z[0o) If “extremes” are high- and low-valued x, take

the smallest central quantile. Yields central
interval (lower limit on m)

T

A

(simplified interpretation applies only to one-dimensional x, and p(x|m) is such
that higher values of m imply higher average x)



CL

The confidence level is usually chosen to match the standard thresholds 68.3%
(10) 95.5% (20) etc. Define also the lowest-ranked a = 1- CL fraction of the most
extreme values

The endpoints of a central confidence interval at given CL can be determined from
one-sided confidence intervals (lower and upper limits) at CL/2

A CL=84% upper limit m2 excludes m values for which xo belongs to the set of
lowest-valued that has 16% (1-CL) probability

A CL=84% lower limit m1 excludes m values for which xo belongs to the set of
highest-valued x set that has 16% (1-CL) probability

Then [m+, m2] includes the central 68% fraction of x values ordered from high to
low: a 1-(16%+16%) = 68% central confidence interval



Confidence intervals

Confidence intervals for binomial parameter p
Directly relevant to efficiency calculation in HEP

Let Bi(n,, | n;.;, p) denote binomial probability of n_, successes
In n, trials, each with binomial parameter p:

Ny 0
non! (ntot_non)!

Bi(N,, | Ny P) = "on (1 — p)" tot = Mon)

In repeated trials, n_, has mean n,_; p and

rms deviation /n,, p (1 —p)
With observed successes n_,, the M.L. point estimate p of p is
6 = non / ntot "

What confidence interval [p,,p,] should we report for p?



Confidence intervals

Suppose we observe 3 successes on 10 trials. What is our efficiency and its
uncertainty?

It is tempting to replace p = 0.30 into 6 = (1/nwt)y/P(1-p) and obtain the interval
01, Pl =p %G

This is not a confidence interval since it does not follow the proper logic of a
frequentist inference. In the construction of the interval each o should be
consistently associated with each p

This is manifest for the cases in which non = Niot Or Non = 0.

[Cousins] 10



Confidence intervals

Confidence intervals for binomial p (cont.)
Suppose n, =3 successes in n, =10 trials.
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Let’s find exact 68% C.L.* central confidence interval [p,,p,]-
Recall shortcut above for central intervals:

Find lower limit p, with C.L. =1 - (1 — 68%)/2. = 84%
l.e., Find p, such that Bi(n_, <3| n,,=10, p,) =84%

Find upper limit p, with C.L. = 84%
l.e., Find p, such that Bi(n_, > 3 | n,,,=10, p,) =84%



Confidence intervals

84%
Ny, =3, N,=10. —
Find p, such that 035 Bi(ngy | Py
Bi(n,, < 3| p,) = 84% o pr=0.142
Bi(Noy > 3 | py) = 16% 16%
(lower limit at 84% C.L.) . , i ‘
Solve: p, = 0.142 0.

0.05 I n
And find p, such that 23 48 6 7 6 910
Bi(n_. > 3| p,) = 84%
Bi(n,, <3| p,) =16% Bi(n,, | p,) 814%
(upper limit at 84% C.L.) 025 p,=0.508" ‘
Solve: p, = 0.508 02

o1sf  16%
Then [p4,p,] = (0.142, 0.508) o
Is central confidence interval _
with 68% C.L. Same as " | | .
Clopper and Pearson (1934) b+ 23 4 5 6 7 8 8 d0

Poisson example: Fig. 3a,b; R. Cousins, Am. J. Phys. 63 398 (1995) DOI: 10.1119/1.17901

Bob Cousins, Stats in Theory Il, Feb 2017
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Neyman construction

J. Neyman came up with a mathematically rigorous procedure
that allows constructing confidence intervals with the desired
level of coverage

Jerzy Neyman (1894-1981)

X—OQutline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability

By J. NEYymMAN

Reader in Statistics, University College, London

(Gommunicated by H. Jerrreys, F.R.S.—Received 20 November, 1936—Read 17 June, 1937}
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Neyman construction illustrated

Prior to looking at data, for each possible true value of parameter m, consider
p(x|m). Its shape can vary as a function of m.

VAR
A N

p(x|m)

[Cranmer]
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Neyman illustrated |

Take a specific value mo of the parameter

p(x|mo)

15



Neyman illustrated |l

Use p(x|mo) to define an acceptance range in x, such that p(x € range | mo) = 68%.

[Cranmer] 16



Neyman illustrated Il

The definition of the acceptance range is not unique
The criterion to choose of the region is chosen is the ordering rule

The rule defining the order of accumulation of the elements along x until the

desired amount of probability, corresponding to the chosen confidence level (68%,
in our example), is accumulated.

[Cranmer]



Neyman illustrated V

Derive the acceptance region for every possible true value of the parameter m

p(z|m)

A

[Cranmer]
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Neyman illustrated VI

This defines a confidence belt for m.

p(z|m)

o

[Cranmer] 19



Neyman illustrated VI

Then you do your analysis on data, and observe a value xo. The observed value
iIntersects the confidence belt. The union of all values of m for which acceptance
ranges are intersected by the measurement defines the confidence interval [m_(x)

m.(x)] at the 68% CL for the parameter. Note that the extremes of the interval are
random variables (functions of data x)

™m

//[/ =
= :

m
Mo
/ *
£
In repeated experiments, the Coonfidence intervals will have different boundaries, but
68% of them will contain the (unknown) true value of the parameter m

[Cranmer]
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Why does it work?

Make a measurement xo and determine the corresponding confidence interval, For
every true value m of the parameter, say my, included in the interval, 68% of the
measurements would be in the acceptance region. Each of the measurements will
lead to a confidence interval that contains mz2 . Hence, the interval contains the true
value with 68% probability, m € [m_, m,] at the 68% CL.

“projection of the
acceptance region
onto the space of

(105 T— parameters” — a
set-theory union, not
m_ lllllllllllllll : an integral.

[Cranmer] N



Toy example

Bags of various classes: each class contains a different fraction of white balls
(1%, 5%, 50%, 95%, and 99%). Extract 5 balls from a bag and infer to which
class the bag belongs

True fraction of white balls

g ClassA=1% | ClassB=5% |Class C =50% |[Class D =95% | Class E = 99%
2 5 100 | 34107 || 31% | 77.4% | 95.1%
o 4 510 | 3105 | 15.6% | 20.4% || 4.8%

o 3 105 | 01% | 313% | 21% | 0.1%

E 2 01% | 21% | 313% || 01% | 10°

§ 1 4.8% 15.6% || 3*10° | 5*1038
> 0 3107 | 10710

22



Note

For simplification purposes, examples discussed have one-dimensional space of
parameter and one-dimensional space of observables and p(x|m) such that the
higher the m the higher the x.

m

/ .
v :
/ x

To

In general, x and m are X and m and they need not to have same ranges, units, or
dimensionality

23



“Non-physical” ranges

It’s frequent to get confused about the ranges for the confidence band
construction.

110}_‘[!"1"![‘![ll]llillll'l LI llll]l'llll"l;lll]

Example: meaurement of a small mass m. L T
using a Gaussian p(x|m) with x observed B
oF mass can |
- fluctuate |
Keep distinct E g :
4 =
3
 data x which, due to resolution, could of- -
fluctuate negative 1E- E
G2 4 0 1 2 3 4 5 &8 7
: ’ Measured Mean x
- the mass parameter m, for which Model

parameter -

negative values do not exist in the model
mass cannot

[Cousins] o4



Ordering

The ordering algorithm is arbitrarily chosen, provided that (i) has been defined
prior to look at the data (ii) for each value m of the parameter, the integral of the
pdf along the x region outside of the belt does not exceed 1-CL.

[Cranmer]
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Probability ordering

In the past, many tried to get the shortest possible interval, so that the resulting
confidence intervals were likely narrower yielding more precise measurements. (this is

the probability ordering or “Crow-Gardner ordering”)

1. Choose one value for m, mo, and look at p(x|mo)

. Rank the x values in decreasing order of p(x|mo)

. Accumulate x starting from the x with highest probability

p(x|mo)
A
. Accumulate all other x until the desired CL is reached.

ﬁ . Repeat for all m
/ \_ ,

£

This is ill-defined: as probability depends on the metric for the observable x, the
shortest interval in one metric isn’t shortest in others.

26



Issues

Long-standing inconsistencies found in Neyman constructions based on
simplistic ordering criteria (i) Gaussian measurement resolution near a physical
boundary (e.g., like a measurement of neutrino mass square close to zero) (ii)
measurements of a Poisson signal in the presence of background when
observed number of events fluctuates below the expected background count.

6
_I LI L] | L L | | LI L | L LI | LI L IIII_ 15
_ 7 14 |- Central 90% CL band fora }..
- Central 9.0% CL panq for a - 13 |-« Poisson with unknown mean }u
ST Gaussian of unit width . 5 fo and background b=0.3
, /i What if one H
B / _ =.10
= f / . observes 5 9
§3 _ N r? > 8
é’ - / 7 X = '1 .8 ! T‘é 7
- - 50 6 s
> F / Ya orn=07? & s
- / / . 4 |
- / o - 3 |
1 p== / 5 |
O ’ll L1l L1l Ill/ L1 bl llll- O ’I
ERS 0 ] > 3 4 012345678 9101112131415

Measured n
Measured Mean x

The resulting confidence regions are empty, which is clearly indicative of a problem.
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Likelihood-ratio ordering (“Feldman and Cousins”)

Those issues were solved by adapting a more ordering,
based on the likelihood ratio

Choose a value mo of the parameter 4
and for each x calculate p(:l? m)
e
T|m
IR — p(z|mo)

p(z|m)

The “accumulation score” of each element in x, no longer depends only on p(x|

mo) but also on p(x|m) at other m values Cranmer]



Likelihood-ratio ordering

. Choose one value for m, mg and generate simulated pseudodata accordingly.

. For each observation x calculate (i) the value of the likelihood at mo, p(x|mo)=L(mo) and (ii) the
maximum likelihood L(m) over the space of m values.

. Rank all x in decreasing order of likelihood ratio LR=Lx(mo)/Lx(m).

. Accumulate starting from the x with higher LR until the desired CL is reached.

. Repeat for all m

As the likelihood is metric-invariant so is the ratio of likelihoods. Therefore LR-
ordering preserves the metric, mostly avoids empty confidence regions and has
several other attractive features. By far the most popular ordering in HEP.

Take LR-ordering as default option unless there are strong motivations against it.

29



Likelihood-ratio ordering practice

It is instructive to trying to reproduce LR bands as per the original paper. http://
arxiv.org/pdf/physics/9711021v2.pdf. Further useful and interesting info in

http://users.physics.harvard.edu/~feldman/Journeys.pdf

TABLE I. Illustrative calculations in the confidence belt construction for signal mean p in the
presence of known mean background b = 3.0. Here we find the acceptance interval for p = 0.5.

n P(n|p) [best P(n|ppest) R rank U.L. central
0 0.030 0. 0.050 0.607 6
1 0.106 0. 0.149 0.708 5 Vv \/
2 0.185 0. 0.224 0.826 3 Vv \/
3 0.216 0. 0.224 0.963 2 Vv \/
4 0.189 1. 0.195 0.966 1 Vv \/
5 0.132 2. 0.175 0.753 4 Vv \/
6 0.077 3. 0.161 0.480 7 Vv \/
7 0.039 4. 0.149 0.259 \/ \/
8 0.017 5. 0.140 0.121 Vv
9 0.007 6. 0.132 0.050 Vv
10 0.002 7. 0.125 0.018 Vv
11 0.001 8. 0.119 0.006 \/

Observed L(y =0.5) b that L(0) Likelihood ratio

count of maximizes L of L(u =0.5)/L({h)
observed of observed observed (ordering score)
count count count

Can use this for Poisson http://stats.areppim.com/calc/calc_poisson.php

30
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Real life — high dimensions

In most real problems likelihoods are complicated multidimensional functions
that cannot be analytically maximized. Two main issues:

Constructing confidence intervals is a significant computing
burden: for each test value of the parameter m, (i) generate
many samples of pseudodata, (ii) fit, and (iii) then move to
another m value etc.. Diverges quickly with dimensionality

With highly-dimensional likelihoods the “projection” of the full-dimensional
confidence band into the lower-dimensional subspace of interest leads to
information loss: structure in the full dimensional space is lost when projected.
The resulting confidence interval is bigger (less precise results).

31



Real life — nuisance parameters

In most problems, systematic uncertainties complicate the interval determination
Neither Neyman nor Feldman-Cousins have a prescription for that.

Parametrize the uncertainty in the shape of the model by unknown nuisance
parameters. Not interesting for the measurement but do influence the result.

Assumed model Reality

p(Z|m) = p(&|m, 5)—  |Nusaee

unknown values

Typically cannot define a probability distribution for s (otherwise they’d be part of
the model) but just a range. Goal: a procedure that guarantees coverage whatever
Is the value of the nuisance parameters within such ranges

Rigorous frequentist confidence intervals in the presence of nuisance parameters
IS a complicated problem for which no universal prescription yet exists.

32



Profile-likelinood ratio ordering

A promising approach: profile-likelihood-ratio (PLR) ordering.

FC ratio-ordering applied to likelihoods profiled (i.e., maximized) with respect to
the uninteresting parameters. The profile-likelihood is not a likelihood. It is a lower-
dimensional derivation of it obtained by maximizing the likelihood wrt to the
nuisance parameters. However, it preserves some of the nice features of the
likelihood ratio: its asymptotic distribution is known and independent of m

_ L(x|m=mg,8")
PLR = T mm.s

Variable Meaning

Parameters of interest (”physics parameters”)
Nuisance parameters

Parameters that maximize L(x|m, s)
Parameter that maximizes L(xz|m = my, s)

RS LIRS
>

33



In practice

Generate pseudodata that sample the full multidimensional space of the parameters.
fitt each sample twice, one with all parameters (physics and nuisance) floating, and
another one with physics parameters fixed to their test value mo.

. Choose one value mg for m and one value sp for s, and generate pseudodata x accordingly

. For each sample x (i) maximize p(x|m=mao,s)=L(m=mo,s) with respect to s to get L(m=mo §*) and
(i) maximize the likelihood L(m,s) over the space of m and s to obtain L(m,$)

. Rank all x in decreasing order of profile likelihood ratio PLR=L(m=mg §*)/L(mM,S)
. Start from the x with higher PLR and accumulate the others until the desired CL is reached.
. Repeat for all values of m

. [Repeat for values of s sampled in a the whole range]

Step 6 is essential to ensure the procedure has coverage for all values of the
nuisance parameters.

Sometimes circumvented using the “plugin method”: only generate pseudodata at
the s values estimated on data. Likely to spoil coverage

34



Sampling the nuisance parameter space

Perform the procedure on a sufficient sampling of (L) :g:r:i?::sian
the full space of s is expensive. - - —ego oL

(.) ’ n —95% CL

S OE
Midway between simplistic plugin and full 107

treatment: restrict the sampling of the s parameter 2o
space to a plausible subvolume centered on their
estimates in data.

[

102

ideal
_Observed 7

E.g., Berger and Boos: sample along each Z :
dimension s; a range around the estimated value S e '

. 0 S 10 15
with CL much larger than the target CL of the —2AIn(L,)
profile-likelihood interval. (e.g, when constructing Application in a 27-dimensional case
a638% _CL bqnd inm, sample a 99.7% CL range in https://arxiv.org/pdf/0810.3229.pdf
each dimension in s space) Phys. Rev. Lett 100 161802,

JASA. 89, 427 (1994) Phys Rev D 85, 072002

Phys. Rev. Lett. 109, 171802,

Comprehensive review of treatment of nuisance parameters: Sec 4 in www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf 35


https://arxiv.org/pdf/0810.3229.pdf

The main burden

By this point you probably have realized that in a confidence interval
construction, most of the time and effort is spent in generating a fitting simulated
data sampled from p(x|m). Effort and the time needed when likelihoods are
highly multidimensional can be disconcerting.

Any way of avoiding this?

36



Wilks' theorem

Asymptotically (large N), the distribution of the likelihood ratio

—2InLR(mg) = —21In p(x‘ﬂfo)
p(x|m)
approaches a x? distribution with # of degrees of freedom equal

to # of additional free parameters in the denominator wrt the
numerator

Samuel S. Wilks (1906-1964)

This holds independently of the shape of p(x|m) and on the value of m.

Great helps in usage of likelihood- and profile-likelihood-ratio as ordering quantities
in the construction of intervals. If the likelihood is regular enough to be in asymptotic
regime, one can avoid massive production of simulated experiments.

37



Wilks' theorem

No need to generate the sampling
distributions of the ordering
statistic.

Just look at where the (profile)-
likelihood ratio observed in my
data falls along the appropriate
curve (determined by the number
of degrees of freedom)

/ 1 additional parameter in p(x|m) wrt to p(x|mO0)

_\ 2 additional parameters in p(x|m) wrt to p(x|mO0)

.3 additional parameters in p(x|m) wrt to p(x|m0)
4 additional parameters

\\\\1 5 additional parameters
\\_\\\

7, /A N e
0 5 10
1 Plalmo)
p(z|m)

How do | know if L is asymptotic? Look at a few samples of pseudodata, and

compare with above.

38



Wilks' theorem at work — MINOS

Moves down from the maximum L(m,$) evaluating L(mo,5m) at each point mo by
maximizing wrt parameters s (i.e., likelihood of m profiled wrt s).

When L(mo,8m)/L(mM,S) equals the threshold values § " | | |

tabulated from the x2 distribution the ° b T

corresponding projection of the profile-likelihood 53 109 Loy

onto the m space approximates (large N) a

Feldman-Cousins central confidence interval 585 b o L 172 -
LR (my) = —21n PEM0) A NI

p(a}\m) 0.8 1 1.2 1.4 1.6

A n=1 n=2 Si? n=4 n=2>5 CL n=1 n=2 ﬂ£3 n=4 n=2>5
1.0 0199 0.090 0037 0683 | 1.00 2.30 353 4.72 5.9
2.0 | 0.843r 0.632 0428 0.264 0.151 00.90 2.71 4.61 7.78 0.24
4.0 0.954\0.865 0.739 0.594 0.451 .95 3.84 2.99 Ry 9.49 11.1
9.0 | 0.997 \0.989 0.971 0.939 0.891 .99 6.63 9.2 11.3 13.3 15.1

\

“projection” onto the space of parameters of a 1(2)-
dimensional likelihood at the point where -2InLR varies by 1.0
units identifies a 1(2)-dimensional 68(39)% CL central interval

/

“projection” onto the space of parameters of a 3-dimensional
likelihood at the point where -2InLR varies by 6.25 units

identifies a 3-dimensional 90%CL central interval




The Asimov asymptotic formulas

Significant recent breakthrough allows generalizing the Wilks theorem and
provides key asymptotic formulas for the distributions of profile likelihood ratios
used in confidence intervals and hypothesis tests.

Eur. Phys. J. C (2011) 71: 1554 THE EUROPEAN
. epjc/s10052-011-155
DOI 10.1140/epjc/s10052-011-1554-0 PHYS'CAL JOURNAL C

Special Article - Tools for Experiment and Theory

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan', Kyle Cranmer?, Eilam Gross?, Ofer Vitells*?

;Physics Department, Royal Holloway, University of London, Egham TW20 OEX, UK
“Physics Department, New York University, New York, NY 10003, USA
3Weizmann Institute of Science, Rehovot 76100, Israel

Received: 15 October 2010 / Revised: 6 January 2011 / Published online: 9 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com
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ypothesis testing
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Are my data compatible with background?
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Or they suggest the presence of a signal”
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The p-value is a random variable that helps answering this question
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/
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Ingredients

Need two hypotheses. only known phenomena contribute“null” or “background” )
new phenomena contribute too (“alternate” or “signal”)

p(x|b) p(x|s+b)

Distribution of x

- . . e S .
Arbitrary function x of the data that allows separating between the two hypotheses

Devise a function x of the data (e.g., signal-event count), whose distribution under
the null p(x|b) “differs” from that under the signal hypothesis p(x|s+b). Generate
these two distributions (labor intensive — typically done using simulation)

Set, prior to the observation, the false-positive rate: how much “signal-like” the
observed value of x should be to exclude the background only hypothesis.

44



p-values for discovering a new effect

Observe xobs. The location of xops relative to the two pdf offers a quantitative
measure of data compatibility with either hypotheses.

p-value: relative fraction of the integral of the null model over values of x as signal-
like as those observed and more. The smaller the p-value, the stronger the

evidence against the null hypothesis. If p-value < false-positive rate, exclude the
background-only hypothesis at CL = 1-(p-value).

p-value of the data
p(x|b). o(x|s+b) X°bs | with respect to the

L null hypothesis

Distribution of x

Cd
-
-



p-values for excluding a new effect

If the purpose is to exclude a new effect, then one tests the signal hypothesis, and
quotes the p-value with respect to that.

Is the relative fraction of the integral of the signal model over values of x as
background-like as that observed and more. The smaller the p-value, the stronger
the evidence against the signal hypothesis.

p-value of the data with respect
to the signal hypothesis

X
©)
O
@

Distribution of x

~,

\\‘
—
-~
.

| - ' h ' }
Arbitrary function x of the data that allows for separation between the two hypotheses
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Testing the Popperian way

Cannot prove that an hypothesis is true, only that it’s false.

“Discover” a signal by excluding its absence (that is, by excluding
that only background contributes). Limit to the existence of a signal
by excluding is presence.

b 3
D . L4
-
)
'S
)%
Y,

Karl Popper (1902-1994)

A p-value is not a probability! It is a random variable (function of the data) that is
distributed uniformly if the tested hypothesis is true.

It does not express the probability that an hypothesis is true or false!
Wrong claim “The measurement shows that the probability for hypothesis blah is ..”

P-values connect to the probability to observe Xobs Or 2@ more extreme value if a
specific hypothesis were true. Proper claim: “Assuming that the hypothesis blah
holds, the probability to observe a fluctuation as extreme as that observed in our
data or more is...” 47



Nomenclature

This is p(x|b), the distribution of x under the This is p(x|s+b), the distribution of x under the
null hypothesis signal hypothesis
...... “I““‘
..A N A“‘
H
H, 1
This is X,
whatever
function of
data whose
distribution
Type Il error rate 3 Type | error rate a is sensitive
/ to separate
/ \ HO from H1
.—/ \_
| w 4-_;---------‘"'
Symbol Meaning
Q Rate of false positives (Type I error: reject Hy, while it was true)
15 Rate of false negatives (Type II error: reject Hy, while it was true)

1 — 3  Power of the test 48




“Significance”

“At how many sigma such and such result is significant?”

The “number of sigma” (or z-value) is just a remapping of p-values into integrals of
one tail of a Gaussian. It expresses by how many sigma from the mean my
observation would be if the test statistic x would be distributed as Gaussian

L/t/f
_ I
N X

2.0

o0 1 —372/2
p=/ € d:z::l—CI)(Z) 1 - TMath: :Freq

Z 2w

Z=&1(1-p) TMath: :NormQuantile 49

[Cowan]



p-values In mass peak

Suppose you measure a value x for each g 10 . . .

event and bin the resulting distribution. = — data
B  --- expected background
The count in each bin is a Poisson
random variable, whose mean in the HO T
hypothesis is given by the dashed line |
4 -
s+ b)"
P(n;s,b) = (s +0) e~ (s+b) I
n! 2 _.--4-“'-'---.--‘____-
Observe a peak of 11 events in the 0 5 - - i
central bins, with expected background B
3.2 events. *

P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5104

Is this evaluation fair or biased?
[Cowan]



“Local” p-value and “look-elsewhere effect”

o

N(x)

— data

That evaluation only accounts for the chances of az "[ — S S
upward fluctuation in that very position at x~9.

That’s the “local p-value”. A ﬂ

{
2 iy EE T ;I_L~ 1
o : _ :—‘ r 1 ] ﬂ
10 10 15 2

X

0 0

s e

“global p-value” need to account for the chances A &
that an excess could have arisen in any pair of : :
adjacent bins. With 20 bins (10 pairs of adjacent ~ Peak could have been ..or here

observed here

bins) the local p-value gets multiplied by =10.

The larger the size of the test space, the higher the probabilities to observe rare
fluctuations.

When quoting p-values, need to correct for the effect of multiple testing (i.e.,
account that we have also been “looking elsewhere” from where the anomaly is).

Use simulation, or approximate correction factors, e.g., in EPJ C70, 525 (2010) .



The conventional “50 rationale”

HEP experimenters conventionally agree to deal with the LEE by setting a rather
extreme standard for p-values to justify claims of new effects. (Originated by a
survey of experimental results on “far-out hadrons” in 1968 — see backup)

One requires the null to be rejected with significance of 3.50 (for “evidence”) and
50 (“observation”), corresponding to very small p-values (fluctuations that occur 3

times every 10 million trials).

The loose rationale is that such high thresholds should protect from the effects
above.

However, one-size-fits-all does not seem appropriate here.
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Which function of the observables x to choose”

Back to p-values.

‘DS 004 Eeemifoeeees E §
B 0.035 ;—------------... _______.'__________é ________________
Can we exploit the arbitrariness in choosing the Q% 006(2)2 5: ----------- y :::;:::::ijf \
test quantity x? Can we devise a function of the 6.02 E— _____________ .-r.l(l ': --------------
observables x that maximizes the power of my 0015 %::::--:::::-':::ﬁ:: e
test at fixed false-positive rate. o os E_ _________________________________ l l ............
0 60 80 100 120 140 160 180

: L : : Events Observed
Pretty obvious in simple counting experiments.

Less obvious in multiple-dimensional nonlinear
problems

1] accept * “*.

[G. Cowan] 53



Neyman-Pearson lemma

It does exist an universal statistic for optimal separation
between the two hypotheses (for simple completely
specified hypotheses)

Ratio between the likelihood for the signal+background
nypothesis (H1) and the likelihood for the bac;kground—onlé(er Nevman
2y IN€y Egon S. Pearson

nypothesis (HO) (1894-1981) (1885-1980)

The region W of acceptance of the null which minimises the probability to accept
the null when the signal hypothesis is true is the contour

p(x|H,
p(z|Ho)

Any region that has the same false-positive rate would have higher rate of false
negatives (technically, less power)

> Kkq
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NP-lemma illustrated proof

Take a contour of the likelihood ratio that has a given rate a of false positives, that is
a given probability under HO

Region We: if data fall there we

reject HO; probability under HO
IS a

Region W: if data fall here we accept
HO; probability under HO is 1-a

p(x[b)  px|s+Db)

\ !
\ 1
\ 1
\ i
\

\ i
\\ i

RS
\\\ i

p(x|p)  p(xis+b)

[Cranmer] 55



NP-lemma illustration

Take a variation that has the same rate a of false positives (same probability under
HO)

[Cranmer] 56



NP-lemma illustration

Take a variation that has the same rate a of false positives (same probability under
HO)

P(\_|Ho) =

S

[Cranmer] 57



NP-lemma illustration

Because the region gained with the new contour was outside of the likelihood ratio
contour and the region lost lost was inside it, the hierarchy between probabilities
under HO and H1 in the two regions is inverted.

Region W: if data fall here we accept
HO; probability under HO is 1-a

Region We: if data fall there we
reject HO; probability under HO
IS a

P(z|H,)

P(_/|Hy)
P(:DIHI) > k
P(x|Hy) P(z|Hy) =~ ¢

P(\_|H1) < P(\_|Ho)k, P(_/|H1) > P(_/|Ho)k,

P(\_|H:) < P(_/|H))

[Cranmer] The new region region has less power.
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(orofile) likelihood-ratio as a test statistic

Convenient because (1) has optimal performance and (2) allows for testing with no
need to laboriously construct distributions by generating and fitting pseudodata
since its large-sample distribution is known (x?)

[Cranmer]
fit under H1 fit under HO

. . . o Sl = %14'— .

1. Fit data under HO: i.e. with a likelihood o ATLAS I ATLAS :

Py ’ A2 VBF H(120)—tt—Ilh A2 VBF H(120)—tt—lh

that only has “background” parameters. 3,k E=1aTev, s0m°] g f 5= 14TeV, 801 -

() C ] 0>) E 7
. Fit data under H1: i.e. with a likelihood e E I -
that includes n additional “signal” free 6 g 6
parameters ac |k -: At

20 & ]f 2f L
. The ratio between the resulting values of|  oBi=tasiu cumr dLULL -1:') % s 7"'-1-15 —
the likelihood functions at their maxima M., (GeV) M. (GeV)
is distributed as a x? with n degrees of X2 o

freedom. LR observed in data

O4F

. Comparison of the ratio obtained in
data with the relevant x? distribution
allows for testing H1 vs HO.
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Issues with p-values

:;zo.os - (b)
7 i
5 L
= 0.04
fot m L
= 0.03 |- 0 o
E .
|
8 n
a. 002 - -
|
|
|
i | ;
0.01 - i
0 i el L e ,1_1,- L L
-60 -40 20 0 20 40 60

Possible to get an observation
that rejects both the null and the
signal hypotheses

[Junk]

Z [ (@
.g ,- e
o 0.25 -
= :
2 0al p(x|b)
%
= 015
=} [
- [
B [

0.1 -

0.05 -

[ op-tantll ] el
) 6 4 - 0 2 4

6
X

For small signals with poor S-vs-B
separation, sensitivity is low, which
means that distributions of test statistics
are nearly equal. Can make no statement
about the signal, regardless of the

outcome 60



Spurious exclusion

signal-like bckg-like
Use the likelihood ratio x to test the presence
of a signal p(x|s+b).

5 0.5_

~ [ p(X|s+b)
Typically, if p-value of the hypothesis s+b is 04F p(x|b)
smaller than 5%, signal gets excluded with F g
95% CL. :

02 '
o _ p-value of b ' p-value of s+b

However, when the distributions of the test
statistic are similar, (1-pvalue) of the E
background hypothesis is just marginally % s 8 4 2 o

higher than p-value of s+b. X
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The CLs method

Scaling the p-value prevents from excluding

hypotheses to which there is no sensitivity. signal-like bckg-like

0.5

Base test on the pvalue for the s+b hypothesis  o(x|s+b)
scaled by (1-pvalue of b). Exclude only if 04 P \

f(Q)

-

03l

CLs = [pvalue for s+b] / [1 - pvalue of b]

02

_ , . p-value of b ' p-value of s+b
is small. Denominator increases the CLs thus

preventing excluding signals for which there is E

no sensitivity. s 6 4 2 o0

When quoting limits, it’'s good practice to assess the analysis sensitivity in terms of
median expected limits based on ensembles of simulated experiments or asymptotic

formulae if applicable to your case
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Duality

Given an ordering, there is a one-to-one correspondence between hypothesis
testing and construction of confidence intervals.

It Is the same problem.

Testying if parameter m equals mo or rather any other value, with a chosen
false-positive rate = pvalue, corresponds to checking if mo is included in the
confidence interval for m with CL=1-(pvalue)

Subtends why the likelihood-ratio based ordering of Feldman and Cousins is a
generalized and powerful criterion for construction of confidence intervals,
thansk to the NP-lemma.
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Additional material
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Confidence intervals

Gaussian pdf p(x|u,c) with o a function of u: 6 =0.2 n

1 _x_ 2 ZGZ 0.25:"'1"'1"'1"’1'"IE """""""""""""" ]
p(x],0) = e~ (X TH)Y/ :
V271G? 02 A E
_ p(xlp, ) N\ ]
o(p) = (0.2) A\ E
. p-10 0 / ' \'\ g
p(x|u,c) with u=10.0, =0.2: o.1E / \\ 3
0.05 / N =
Suppose X, = 10.0 is observed. A L N 1

2468101214161820

What can one say about p ? =10.0

Minimum ¥ for a single observation of 10, yields {i = 10. Then
estimate 6 =02 x[1=0.2x10=2.0

Therefore p + 6 = [8.0, 12.0]
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Confidence intervals

Gaussian pdf p(x|u,c) with o a function of u: 6 =0.2 n

1 _(x _u)Z/ZGZ
X|p,0) = e
o(u) = (0.2) p
p(x|u,c) with p=10.0, c=0.2:
Suppose X, = 10.0 is observed.
L) = — e (x—w)?/2(02p)
J271(0.2p)?
L (n) for observed x, = 10.:
Uy = 9.63

What is confidence interval for p?

0_25111!11 LN I L B B N A B S LA B B O B | LIS B B O B B N N B |

0.15

0.25111111 LN B B N N B B N B N | LS N B R R LI B B O B B N S R |

0.2

0.2+
0.15}
0.1-

0.05+

1
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Confidence intervals

Observed x, = 10.0.

Gaussian pdf p(x|u,c) with o a function of u: 6 =0.2 n

Find p, such that 84% of p(x|u,,6=0.2u,) is
below x, = 10.0; 16% of prob is above.
Solve: p, =8.33.

[14,0] is 84% C.L. confidence interval
u, is 84% C.L. lower limit for p.

Find p, such that 84% of p(x|u,,6=0.2,) is
above x, = 10.0; 16% of prob is below.
Solve: p, =12.5.

[ oo,u,] is 84% C.L. confidence interval
W, is 84% C.L. upper limit for p.

Then 68% C.L. central confidence interval is

[“1 su2] = [83371 25]

0.25

;1-833/\ 3
c=167/ |\

0.15f \: ;

0.

l\)

0.1+ -

o0ef / Whatd \6% :

0024'68101214161820

- — E
: =125
" o=25 -

0.15— : /\ -
[ ] -

0.1~ 3
0 os':— 1 y 84%\ q

0024681p1214161820

0.2—

67



LEE at Fermilab, the “Oops-Leon” discovery

Leon Lederman in the '60-'70 led many of the
key experiments that laid the foundations of
the standard model.

; Observation of High-Mass Dilepton Pairs in Hadron Collisions at 400 GeV
In 1976, Lederman’s group SO o7 T bt e

D. C. Hom, L. M. Lederman, H, P. Paar, H, D. Snyder, J. M. Weiss, and J. K. Yoh

announced the Columbia University, Now York, New York 10027+
observation of a new and

particle produced in T P ions satotes soror, o s omtpy
collisions of protons on and

Beryl I U m and decayl ng State University of New York atDS.tol:/zlj.: gofloe)llea:nStony Brook, New York 11794 *

: : . (Received 28 January 1976)
Into e+ e- pairs, with a
We report preliminary results on the production of electron-positron pairs in the mass

mass Of abo u‘t 6 Gev range 2.5 to 20 GeV in 400-GeV p-Be interactions. 27 high-mass events are observed in

the mass range 5.5-10.0 GeV corresponding to o=(1.240.5) x10™3° em? per nucleon. Clus-
tering of 12 of these events between 5.8 and 6.2 GeV suggests that the data contain a new
resonance at 6 GeV.

R S e
68




The “Oops-Leon” particle

This was published and provided a very strong 0> ‘."
candidate for the Upsilon, the bound state of a al j\-
(then still unobserved) fifth quark. h\ w
\
IH
More data did not confirm the finding. 1N l] m r
N 40

6 7 8 9
Invariant ee mass
—‘w

The erroneous first claim has been later tracked
down to a mistake in the statistical evaluation of

a linear A dependence.” We have studied the
probability for a clustering of events as is ob-

the significance of the signal, which did not served here to result from 2 fluctustion in a
smooth distribution, e.g., Eq. (3). To avoid the
properly account for the LEE. difficult problems involved in the statistical theo-

ry associated with small numbers of events per
resolution bin, a Monte Carlo method was used.
Histograms were generated by throwing events
according to a variety of smooth distributions,
modulated by the mass acceptance, over the
mass range 5,0 to 10,0 GeV, Clusters of events
as observed occurring anywhere from 5.5 to 10.0
GeV appeared less than 2% of the time.® Thus
the statistical case for a narrow (< 100 MeV) res-
onance is strong although we are aware of the

need for confirmation, These data, at a level of
DR ————msana_—




PS5

A couple of years later, the same group

using muon pairs found the actual Upsilon
meson, at 9.5 GeV.

Nobody cared too much about the 6 GeV
fluke, which someone dubbed “Oops-

Leon” in a pun over Lederman’s and the
Upsilon’s name.

Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions
8. W. Herb, D, C. Hom, L. M. Lederman, J. C. Sens,'” H. D. Snyder, and J. K. Yoh
Columbia Unitversity, New York, New York 10027
and

J. A. Appel, B. C. Brown, C. N, Brown, W, R. Innes, K. Ueno, and T. Yamanouchi
Fermi National Accelevalor Laboratory, Batavia, Mlinois 60510

and

A, 8. Ito, H. Jostlein, D. M. Kaplan, and R, D, Kephart

State University of New York at Stomy Brook, Stomy Brook, New York 11974
(Recelved 1 July 197T)

Accepted without review at the request of Edwin L. Goldwasser under policy announced 26 April 1976

Dimuon production is studied in 400-GeV proton-nucleus collisions, A strong enhance-

ment is observed at 9.5 GeV mass in a sample of 9000 dimuon eveats with a mass m . -
> 5 GeV.
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Where is “elsewhere””?

Tenths, or hundreds, or thousands of
distributions may have been inspected, in the
same analysis or in other analyses.

Should we correct for these as well?

How large is the testing space to base our
correction on?

N(x)

N

T

3
o N ~ o] © ob
'

g 10 .
—= l — data
8

= expected background

ﬂ _____ 1)

— data

expected background _—

&@ﬂ'

|Uwhﬂ

Should we go back and correct previously published p-values when new

analyses are completed?

Guidance (consensus at the Banff 2010 Statistics Workshop):

limit the testing

space to models that are inspected within a single published analysis
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Far-out hadrons

In 1968, Art H. Rosenfeld at UC Berkeley
surveyed the searches for exotic hadrons that did
not fit the then-new static quark model.

He noted that the number of discovery claims
quite matched with the number of statistical
fluctuations expected in the data sets analyzed.

Rosenfeld blamed the large mutliple testing corrections needed to account for the
massive use of combination of observed particles to construct mass spectra
containing potential exotic excesses.

“[...] This reasoning on multiplicities, extended to all combinations of all outgoing particles and to all countries, leads to
an estimate of 35 million mass combinations calculated per year. How many histograms are plotted from these 35
million combinations? A glance through the journals shows that a typical mass histogram has about 2,500 entries, so
the number we were looking for, h is then 15,000 histograms per year. [...] Our typical 2,500 entry histogram seems to
average 40 bins. This means that therein a physicist could observe 40 different fluctuations one bin wide, 39 two bins
wide, 38 three bins wide... This arithmetic is made worse by the fact that when a physicist sees 'something’, he then

tries to enhance it by making cuts...” 79
”[Dorigo]
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https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/

Far-out hadrons

“In summary of all the discussion above, | conclude that each of our 150,000 annual histograms is capable
of generating somewhere between 10 and 100 deceptive upward fluctuations [...] To the theorist or
phenomenologist the moral is simple: wait for nearly 50 effects. For the experimental group who has
spent a year of their time and perhaps a million __dollars, the problem is harder... go ahead and
publish... but they should realize that any bump less than about 5o calls for a repeat of the experiment.”

Rosenfeld also mentions the semiserious GAME test by his colleague,
Gerry Lynch

“My colleague Gerry Lynch has instead tried to study this problem ‘experimentally’ using a ‘Las Vegas’ computer program
called Game. Game is played as follows. You wait until a unsuspecting friend comes to show you his latest 4-sigma
peak. You draw a smooth curve through his data (based on the hypothesis that the peak is just a fluctuation), and
punch this smooth curve as one of the inputs for Game. The other input is his actual data. If you then call for 100 Las
Vegas histograms, Game will generate them, with the actual data reproduced for comparison at some random page.
You and your friend then go around the halls, asking physicists to pick out the most surprising histogram in the
printout. Often it is one of the 100 phoneys, rather than the real ‘4-sigma’ peak.”

[Dorigo] 73



