BEYOND THE STANDARD MODEL

Lecture III

Jessie Shelton U. Illinois, Urbana-Champaign

Hadron Collider Physics Summer School September 1, 2017, CERN

WIMP(Y) DM AT THE LHC

- Thermal DM is one of the main motivations for new physics to lie near weak scale
 - WIMP DM: freezeout governed by SM interactions
 - highly predictive, highly constrained

WIMP(Y) DM AT THE LHC

- Thermal DM is one of the main motivations for new physics to lie near weak scale
 - WIMP DM: freezeout governed by SM interactions
 - highly predictive, highly constrained
 - "WIMPy DM": freezeout to SM through new interactions
 - interaction strength of DM, mediator with SM fixed by requiring specific relic abundance for DM
 - broader range of possible signatures, depending on quantum numbers

relationship between signals in different experimental probes of thermal DM is highly model-dependent: rich source of information

- Annihilation cross-section is $\langle \sigma v \rangle = a + bv^2 + \dots$, with values of *a*, *b* largely fixed by quantum numbers of DM, mediator
 - since $v_{today} \ll v_{fo}$, annihilation cross-section today can be substantially suppressed if *a* is small
- Ex: scalar DM with Z' mediator

- Direct detection prospects typically good for Z' mediators: DM-nucleon cross-section has a leading spinindependent cross-section, thus large coherent enhancement
 - (for a pseudo-scalar, spinindependent cross-section only shows up at loop level)
- But if DM is light, the nuclear recoil energy can be too small to detect

Directly produce DM, i.e., MET at the LHC

- Directly produce DM, i.e., MET at the LHC
- Need ISR to make system visible

- Directly produce DM, i.e., MET at the LHC
- Need ISR to make system visible
- Differences in production rates
 between axial, vector interactions are
 less dramatic (can be O(1) at high mass)
- unique sensitivity to very light DM

DM AT THE LHC

- Kinematics of DM production depends on $m_{Z'}$, m_{χ} : need for simplified models beyond EFT description
- Related processes: mediator production (i.e., no direct involvement of DM)
- Since thermal freezeout only constrains product *g_{SM} g_X*, relationship between MET signal and resonance signal is not uniquely fixed

DM AT THE LHC

The shape of exclusions should look familiar

DM AT THE LHC

• Unique sensitivity at low mass; spin-dependent σ_N

 though bear in mind that these kinds of plots are apples-to-oranges comparisons

• But since we're talking about adding two new particles to describe DM freezeout, we should also consider the equally simple and minimal case $m_{\chi} > m_{med}$:

then DM can annihilate directly to pairs of mediators

- If $g_{SM} \sim g_{\chi}$, these diagrams just give an additional contribution to DM annihilation
- But if $g_{SM} \ll g_{\chi}$, dark matter freezeout proceeds more or less independently of SM until the mediator ultimately decays

Leading LHC signal: dark photon production

simple model: dark photon is lightest dark state, only SM decays

[Curtin, Essig, Gori, JS]

 Dark and visible Higgses will in general also mix, giving an entirely separate probe of the dark sector

 Higgs mixing opens a deep window into otherwise inaccessible territory: displaced dark photon decays

[Curtin, Essig, Gori, JS]

HIDDEN SECTORS

- These kinds of DM models are examples of hidden sectors: a set of fields uncharged under SM interactions, interact among themselves
- One way to approach lack of evidence for SM-charged new physics to date is to use hidden sectors to solve puzzles of the SM
- Not surprising this works for dark matter. But it can be applied to the hierarchy problem too!

NEUTRAL NATURALNESS

Solving the hierarchy problem in the dark:

- top partner neutral under SM forces: dark top
- this structure only works if T has same kind of interactions as t
- can charge *T* under mirror copy of SM forces. Dark gluons, dark *W*, *Z* bosons

NEUTRAL NATURALNESS

Only the Higgs talks directly to dark sector:

strength of interaction: depends on amount of fine-tuning in *m_h*

NEUTRAL NATURALNESS

- Since there are no new colored states in this solution to the hierarchy problem, experimental results do not force these models to be fine-tuned
- Best signatures:
 - Higgs properties
 - exotic Higgs decays to light mirror hadrons
 - pair production of mirror *T*: rare but distinctive

- Exotic Higgs decays are one of the most important probes of dark sectors at the LHC
 - The Higgs is one of the easiest places in the SM for SM-singlet new physics to couple: $|H|^2$ carries no SM charge
 - Higgs branching ratios are unusually sensitive to existence of BSM decay modes
- LHC is the only place where Higgs bosons are made onshell: unique discovery possibilities for dark sectors

A light SM-like Higgs is narrow:

 $\Gamma_h(125 \text{ GeV}) = 4.1 \text{ MeV}$

Presence of new light degrees of freedom can distort Higgs Brs by O(1) even for small couplings

Simple example: one new scalar

$$\Delta \mathcal{L} = \frac{\zeta}{2} s^2 |H|^2$$

Indirect limits: observation of SM modes

- The LHC as an intensity frontier machine
 - Higgs production cross-section at 13 TeV: ~50 pb
 - Integrated luminosity, ~35 / fb
 - \rightarrow 10⁶ Higgs bosons served
 - If: reasonable reconstruction efficiency, good S/B: statistics for branching fractions ~10⁻⁵
 - this is like the kinematic limit: best possible reach
 - But getting to this limit is often challenging: Higgs is light

• Example: one especially well-motivated mode: $h \rightarrow ss(aa) \rightarrow 4b$

Dark matter:

- Thermal WIMP: $XX \rightarrow a \rightarrow SM$, $XX \rightarrow ss$ (*aa*)
- Neutral naturalness:
 - s is composite: dark glueballs
 - in this case the decays can rapidly become displaced

- Currently ATLAS has a search that is not yet constraining
 - high backgrounds, starting with trigger

Four soft *b*-jets: $p_T \lesssim 30~{
m GeV}$ use *VH* associated production

Displaced decays are in some ways easier: S/B

but in some ways harder: triggering, reconstruction, backgrounds

[Csaki, Kuflik, Lombardo, Slone]

- LLPs arise naturally in a wide variety of models
- Perhaps SUSY is a little bit tuned:

 Mini-split: ino lifetime suppressed by high sfermion scale

 $c\tau \approx 100 \mu m \times \left(\frac{m_{\tilde{q}}}{1000 \,\mathrm{TeV}}\right)^4 \left(\frac{\mathrm{TeV}}{m_{\tilde{z}}}\right)^5$

- LLPs arise naturally in a wide variety of models
- Perhaps SUSY is a little bit tuned:

- And as we've already seen, multi-state hidden sectors can easily give displaced decays:
 - Presence of multiple states allows production to be governed by different couplings than decay:
 appreciable production cross-sections, suppressed decays
 - Symmetries can also do this: in our SUSY examples, *R*-parity

- This is especially true if the hidden sector confines, as in neutral naturalness
 - composite states decay through high mass-dimension operators and can thus easily be displaced. Hierarchies of lifetimes are generic
 - importance of (approximate, discrete, ...) symmetries in controlling dark state lifetimes: typically these will vary among states in spectrum
 - dark showers / cascades can yield high multiplicities if there is a separation of scales

- Independently, there are many cosmological reasons to look for LLPs
- For instance, baryon number:

 avoiding washout of baryon number in early universe requires baryon-violating RPV couplings small

 BSM states that have a macroscopic proper lifetime can give spectacular signals

[Antonelli]

- SM physics backgrounds are very small compared to prompt searches
 - mostly heavy flavor, at relatively short lifetimes
- thus, dominant backgrounds are usually a combination of (weird truth level physics) x (weird detector response)
 - impossible to model reliably from first principles!
 - to date many searches have been background free; this will change as luminosity increases

- LLP searches often relatively insensitive to the details of the decay
 - depends on the location of the decay in the detector: there's more information for decays in the tracker than in the HCAL
 - but also because reconstruction criteria for a displaced object can be looser than for prompt objects
- thus LLP searches are often powerful and inclusive

Thus it is actually easier to make sweeping statements about displaced SUSY than prompt SUSY:

[Liu, Tweedie]

Thus it is actually easier to make sweeping statements about displaced SUSY than prompt SUSY:

[Liu, Tweedie]

CONCLUSIONS

- Prime motivations for new physics to appear at the LHC:
 - electroweak naturalness
 - thermal dark matter
 - "who ordered that?"
- Many different avenues to discovery:
 - Higgs properties, *B*-meson studies, direct searches for BSM states
- Active interplay with wide range of other experiments
- We are learning a lot about our universe!