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Topics

• A Brief Recap and Transverse Optics

• Longitudinal Motion

• Main Diagnostics Tools

• Possible Limitations

• CERN Upgrade Projects: LIU & HL-LHC
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A brief recap and then we continue 

on transverse optics
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Magnetic Element & Rigidity

• Increasing the energy requires increasing the magnetic 

field with B𝜌 to maintain radius and same focusing 

• The magnets are arranged in cell, such as a FODO lattice
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Hill’s Equation
• Hill’s equation describes the horizontal and vertical betatron oscillations
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𝑥 𝑠 = 𝜀𝛽𝑠 cos(𝜑 𝑠 + 𝜑) 𝑥′ = −𝛼 ൗ𝜀 𝛽 cos 𝜑 − ൗ𝜀 𝛽 sin(𝜑)𝜑

Position: Angle:

• 𝜀 and 𝜑 are constants determined by the initial conditions

• 𝛽(s) is the periodic envelope function given by the lattice configuration

𝑄 Τ𝑥 𝑦 =
1

2𝜋
න
0

2𝜋 𝑑𝑠

𝛽 Τ𝑥 𝑦(𝑠)

• Qx and Qy are the horizontal and vertical tunes: the number of oscillations 

per turn around the machine



Betatron Oscillations & Envelope

• The 𝜷 function is the envelope function within which all particles oscillate

• The shape of the 𝜷 function is determined by the lattice
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FODO Lattice & Phase Space
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QF QD • Calculating a single FODO Lattice 

and repeat it several time

• Make adaptations where you have 

insertion devices e.g. experiment, 

injection, extraction etc.

x’

x

 /.

 /
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.
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• Horizontal and vertical phase space

• Qh = 3.5 means 3.5 horizontal 

betatron oscillations per turn around 

the machine, hence 3.5 turns on the 

phase space ellipse

• Each particle, depending on it’s initial 

conditions will turn on it’s own ellipse 

in phase space 



Momentum Compaction Factor

• The change in orbit with the changing momentum 

means that the average length of the orbit will also 

depend on the beam momentum. 

• This is expressed as the momentum compaction 

factor, 𝛂p, where:
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∆𝑟

𝑟
= 𝛼𝑝

∆𝑝

𝑝

• 𝛂p expresses the change in the radius of the closed 

orbit as a a function of the change in momentum



Dispersion

• The beam will have a finite horizontal size due to it’s momentum spread, unless we install and 

dispersion suppressor to create dispersion free regions e.g. long straight sections for experiments
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𝑝
∆𝑥

𝑥
 


B
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∆𝑥

𝑥
= 𝐷(𝑠)

∆𝑝

𝑝

• Our particle beam has a momentum spread that in a homogenous dipole field will translate in a beam 

position spread at the exit of the magnet



Chromaticity
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• The chromaticity relates the tune spread of the transverse motion 
with the momentum spread in the beam.

p0

A particle with a higher momentum 

as the central momentum will be 

deviated less in the quadrupole and 

will have a lower betatron tune

A particle with a lower momentum 

as the central momentum will be 

deviated more in the quadrupole 

and will have a higher betatron tune

p > p0

p < p0

QF

∆𝑄 Τℎ 𝑣

𝑄 Τℎ 𝑣
= 𝜉 Τℎ 𝑣

∆𝑝

𝑝



Chromaticity Correction
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x

ByFinal “corrected” By

By = Kqx (Quadrupole)

By = Ksx
2 (Sextupole)

∆𝑄

𝑄
=

1

4𝜋
𝑙𝛽(𝑠)

𝑑2𝐵𝑦

𝑑𝑥2
𝐷(𝑠)

𝐵𝜌 𝑄

∆𝑝

𝑝

Chromaticity Control 

through sextupoles



Longitudinal Motion
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Motion in the Longitudinal Plane

• What happens when particle momentum increases in a constant 

magnetic field?

• Travel faster (initially)

• Follow a longer orbit

• Hence a momentum change influence on the revolution frequency
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𝑑𝑓

𝑓
=
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𝑣
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𝑝

• From the momentum compaction factor we have:

• Therefore:



Revolution Frequency - Momentum

From the relativity theory:
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𝑓
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1
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𝑑𝑝
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We can get:



Transition

• Low momentum (𝛽 << 1 & 𝛾 is small) 

• High momentum (𝛽 ≈ 1 & 𝛾 >> 1) 

• Transition momentum 
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RF Cavities
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Variable frequency cavity 

(CERN – PS)

Super conducting fixed frequency cavity

(LHC)



RF Cavity
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Rende Steerenberg         

CERN - Geneva

• Charged particles are accelerated by a longitudinal electric field

• The electric field needs to alternate with the revolution frequency



Low Momentum Particle Motion

• Lets see what a low energy particle does with 

this oscillating voltage in the cavity
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1st revolution period

V

time

2nd revolution period

V

• Lets see what a low energy particle does with 

this oscillating voltage in the cavity



Longitudinal Motion Below Transition
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1st revolution period

V

time
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….after many turns…
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100st revolution period
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….after many turns…
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200st revolution period

V

time
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….after many turns…
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400st revolution period

V

time

A
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….after many turns…
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500st revolution period

V
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A
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….after many turns…
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….after many turns…
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700st revolution period
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….after many turns…
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….after many turns…
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900st revolution period

V
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A

B



….after many turns…
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900st revolution period

V

time

A

B

• Particle B has made 1 full oscillation around particle A

• The amplitude depends on the initial phase

• This are Synchrotron Oscillations



Stationary Bunch & Bucket

• Bucket area = longitudinal Acceptance [eVs]

• Bunch area = longitudinal beam emittance = 𝜋.∆E.∆t/4  [eVs]
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∆E

∆t (or 𝛷)

∆E

∆t

Bunch

Bucket



What About Beyond Transition

• Until now we have seen how things look like 
below transition
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Higher energy  faster orbit  higher Frev  next time particle will be earlier.

Lower energy  slower orbit  lower Frev  next time particle will be later.

• What will happen above transition ?

Higher energy  longer orbit  lower Frev  next time particle will be later. 

Lower energy  shorter orbit  higher Frev  next time particle will be earlier. 



Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V Phase w.r.t. RF 

voltage 

𝛷
Synchronous 

particle

RF Bucket

Bunch



∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or ∆)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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Before & Beyond Transition
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Before transition

Stable, synchronous

position

E

∆t (or 𝛷)

After transition

E

∆t (or 𝛷)



Synchrotron Oscillation
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• On each turn the phase, 𝛷, of a particle w.r.t. the RF 

waveform changes due to the synchrotron 

oscillations. 
rev

fh
dt

d
 


2

Change in 

revolution 

frequencyHarmonic 

number

E

dE

f

df

rev

rev 

rev
fdE

E

h

dt

d





 2

dt

dE
f

E

h

dt

d
rev 




 2
2

2

• We know that 

• Combining this with the above 

• This can be written as: Change of 

energy as a 

function of time



Synchrotron Oscillation
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• So, we have:
dt

dE
f

E

h

dt

d
rev 




 2
2

2

• Where dE is just the energy gain or loss due to the RF system during 

each turn

𝛷

V

Synchronous 

particle 

dE = zero

V

∆t (or 𝛷)

dE = V.sin𝛷



Synchrotron Oscillation
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• If 𝛷 is small then sin𝛷=𝛷

dt

dE
f

E

h

dt

d
rev 




 2
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Vf
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h

dt
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• This is a SHM where the synchrotron oscillation 
frequency is given by: 

rev
f

E

Vh







 2
Synchrotron 

tune Qs



Acceleration
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• Increase the magnetic field slightly on each turn.

• The particles will follow a shorter orbit. (frev < fsynch)

• Beyond transition, early arrival in the cavity causes a gain in energy 

each turn.

• We change the phase of the cavity such that the new synchronous 

particle is at 𝛷s and therefore always sees an accelerating voltage

• Vs = Vsin𝛷s = V𝛤 = energy gain/turn = dE

𝛷

V

dE = V.sin𝛷s

∆t (or 𝛷)



Accelerating Bucket
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s

∆E

∆t (or 𝛷)

Stationary 

synchronous 

particle

accelerating 

synchronous 

particle

∆t (or 𝛷)

Stationary 

RF bucket

Accelerating 

RF bucket

V



Accelerating Bucket
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• The modification of the RF bucket reduces the acceptance

• The faster we accelerate (increasing sin 𝛷s ) the smaller the 

acceptance

• Faster acceleration also modifies the synchrotron tune.

• For a stationary bucket (𝛷s = 0) we had:

• For a moving bucket (𝛷s ≠ 0) this becomes:

rev
f

E

h







 2

s
rev

f
E

h



cos

2











Higher Harmonic RF Voltage

• Until now we have applied an oscillating voltage with 

a frequency equal to  the revolution frequency
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frf = frev

• What will happen when frf is a multiple of frev ???

frf = h frev



72 bunches

Eject 36 or

h = 7 or 9

h = 21

h
=

 8
4

Eject 24 or

48 bunches
Controlled blow-ups

tr

Split in four at flat top

25 ns

2
6

 G
e

V
/c

BCMS (8 PSB b.)Standard (6 PSB b.)

8b4e (7 PSB b.) 80 bunches (7 PSB b.)

Bunch Splitting

Rende Steerenberg         

CERN - Geneva

CERN-Fermilab HCP Summer School   

2 September 2017
49

Standard: 72 bunches @ 25 ns

BCMS: 48 bunches @ 25 ns

The PS defines the longitudinal 

beam characteristics



RF Beam Control
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Radial Position 

regulation

Phase 

regulationBeam phase and 

position data

Cavity voltage and phase 

(frequency) data

Beam

Beam Position

Monitor

Radio frequency

Cavity



Main Diagnostics Tools

Rende Steerenberg         

CERN - Geneva

CERN-Fermilab HCP Summer School   

2 September 2017
51



Beam Current & Position
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Beam intensity or current measurement:

• Working as classical transformer

• The beam acts as a primary winding

Beam position/orbit measurement:

Correcting orbit using automated beam steering



Transverse Beam Profile Monitor
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Transverse beam profile/size measurement:

• Secondary Emission Grids

• Wire scanners

http://ab-dep-op.web.cern.ch/ab-dep-op/dokuwiki/lib/exe/fetch.php?cache=cache&media=cps:sftpro:sem-fils-v-tt2-sftpro.gif


Wall Current Monitor
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• A circulating bunch creates an image current 
in vacuum chamber.

--

--

-

++

+ ++

+
bunch

vacuum chamber

induced charge

 The induced image current is the same size but has the 
opposite sign to the bunch current.

resistor

Insulator
(ceramic)+ +



Longitudinal TomoScope

• Make use of the synchrotron motion that turns the “patient” 

in the Wall Current monitor
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Possible Limitations
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Space Charge
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• Between two charged particles in a beam we have 

different forces:

Coulomb

repulsion
Magnetic 

attraction

I=ev

𝛽

𝛽=1

+

+

magnetic

coulomb
force

total 

force

0



Space Charge
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• At low energies, which means β<<1, the force is mainly 
repulsive ⇒ defocusing

• It is zero at the centre of the beam and maximum at the 
edge of the beam

+
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Laslett tune shift

Rende Steerenberg         

CERN - Geneva

CERN-Fermilab HCP Summer School   

2 September 2017
59

32

,

0

,
4  vh

vh

Nr
Q 

• For the non-uniform beam distribution, this non-linear 
defocusing means the ΔQ is a function of x (transverse 
position)

• This leads to a spread of tune shift across the beam

• This tune shift is called the ‘LASLETT tune shift’

• This tune spread cannot be corrected and does get very large at high 

intensity and low momentum

Relativistic parameters

Beam intensity

Transverse emittance



Resonance & Tune Diagram
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+
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1
4

Qh+2Qv=15

During acceleration we 

change the horizontal 

and vertical tune 

to a place where the 

beam is the least 

influenced by 

resonances.

injection

ejection



Beam – Beam Effect

• Particle beam are surrounded by magnetic fields

• If the beams “see” each other in colliders these magnetic 

fields can act on the both beams and can cause 

defocussing effect and tune shifts
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Collective Effects

Rende Steerenberg         

CERN - Geneva

CERN-Fermilab HCP Summer School   

2 September 2017
62

• Induced currents in the vacuum chamber (impedance) can result in 

electric and magnetic fields acting back on the bunch or beam

Coupled Bunch Instabilities

Head-Tail Instabilities



Cures for Collective Effects

• Ensure a spread in betratron/synchrotron 

frequencies

• Increase Chromaticity

• Apply Octupole magnets (Landau Damping)

• Reduce impedance of your machine

• Avoid higher harmonic mode in cavties

• Apply transverse and longitudinal feedback 

systems
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Electron Cloud

• e-cloud when SEY is beyond 2, hence it depends on the vacuum 

chamber surface

• The electron cloud forms an impedance to the beam and can cause 

beam instability

• In the SPS and the LHC we use the “scrubbing” method to reduce the 

SEY

• The SPS vacuum chambers will be Carbon coated to reduce the SEY
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LIU & HL-LHC Projects
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Luminosity, the Figure of Merit

Rende Steerenberg         

CERN - Geneva

CERN-Fermilab HCP Summer School   

2 September 2017
66

LUMINOSITY =
Nevent

sec

s r

=
N1N2 frevnb

4ps xs y

F

• More or less fixed:

• Revolution period

• Number of bunches

Intensity per 

bunch

Beam 

dimensions

Number of 

bunches

Geometrical

Correction 

factors

X 2
• Parameters to optimise:

– Number of particles per bunch

– Beam dimensions

– Geometrical correction factors



LIU: What will be changed ?
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• PS:
• Injection energy increase from 1.4 GeV to 2 GeV

• New Finemet® RF Longitudinal feedback system 

• New RF beam manipulation scheme to increase 
beam brightness

• LINAC4 – PS Booster:
• New LINAC 4 with H- injection 

• Higher injection energy

• New Finemet® RF cavity system

• Increase of extraction energy

• SPS
• Machine Impedance reduction (instabilities)

• New 200 MHZ RF system

• Vacuum chamber coating against e-cloud

These are only the main modifications and this list is not exhaustive
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• Produce and accelerate H- at 160 MeV

• Inject H- into the PSB and strip the 

electrons  protons in the PSB

• During the following turns interleave 

the circulating protons with H- that will 

be stripped

Injecting multiple turns will increase intensity and density
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• New IR-quads (inner 
triplets)

• New 11T short dipoles

• Collimation upgrade

• Cryogenics upgrade

• Crab Cavities

• Cold powering

• Machine protection

• …

Major intervention on more than 1.2 km of the LHC

These are only the main modifications and this list is not exhaustive
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Crab cavities will reduce the effect of the geometrical factor 

on the luminosity



The Schedule
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For those who want to learn more
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• Accelerators for Pedestrians
• Author: Simon Baird

• Reference: CERN-AB-Note-2007-014 (Free from the Web)

• CERN Accelerator School
• Fifth General Accelerator Physics Course

• Editor: S. Turner

• Reference: CERN 94-01 (volume I & II) (Free from the Web)

• An Introduction to Particle Accelerators
• Author: Edmund Wilson

• Reference: ISBN 0-19-850829-8 (CERN Book shop)

• Particle Accelerator Physics (3rd edition)
• Author: Helmut Widemann

• Reference: ISBN 978-3-540-49043-2 (CERN Book shop)




