
ROOT Plans for 2017 and Beyond
11th January 2017, SFT Group Meeting

Outline
✤ What did we manage from last year’s plans?

✤ Quick review of tasks
✤ Main areas of work for 2017

✤ Maintenance and support
✤ Development tasks

✤ Foreseen tasks in each ROOT sub-system
✤ Documentation
✤ Building and packaging
✤ Infrastructure
✤ Tutorials and courses

2

The ROOT Core Team
✤ Bertrand BELLENOT
✤ Philippe CANAL (FNAL)
✤ Oliver COUET
✤ Gerri GANIS
✤ Enrico GUIRAUD (DOCT)
✤ Pere MATO
✤ Lorenzo MONETA

3

✤ Axel NAUMANN
✤ Danilo PIPARO
✤ Enric TEJEDOR (FELL)
✤ Xavi VALLS (DOCT)
✤ Vassil VASSILEV (Princeton)

Review Last Year Plan

Cling Interpreter and PCMs

✤ Major upgrade of LLVM/Clang to support new ABI
✤ Building ROOT with ‘clang modules’

5

👍

👍

Parallelization: Multi-Threading

✤ Parallel processing (reading) of TTree being explored with Functional
Chains (see later)

6

👍
👍

👍

👍

Parallelization: Multi-Process

✤ TProcessExecutor and TThreadExecutor implements TExecutor interface
✤ used internally in Math and TVMA

✤ Investigating the use of Spack clusters

7

👍

👍

👎

👍

Parallelization: Math Use Cases

✤ MT/MP fitting is almost done
✤ Replacement of ProofLite by multiproc is postponed for this year

8

Vectorization

✤ Mainly work in progress (Xavi’s PhD work) to be completed soon
✤ Separate release of VecCore would be desirable

9

👍

New C++ Interfaces (ROOT 7)

✤ Continued bi-weekly [monthly] meeting with users from experiments
✤ Testing, suggestions, feedback, etc.

✤ ‘root7’ build option to start playing with the new classes
10

I/O Performance

11

👍

I/O New Features

12

👍

👎

Geometry

13

👍

👍

Math Libraries

✤ RooStats and RooFit tasks removed since it didn’t receive request
from users

14

👍

👍

👎

👍

👎

👎

Machine Learning

✤ Ongoing re-engeeniering of TVMA. Performance improvements.
✤ Added additional interfaces to main stream tools (e.g. SciKitlearn,

Keras, R)
15

👍

👍

👍

👍

Graphics

16

👍

👍

👍

👍

JSROOT

17

👍

👍

👍

Python bindings and ecosystem

✤ Work in progress to re-structure Python packages within ROOT
✤ Functional chains started a python prototype (summer student). See

later
18

👍

👎

Packaging and Modularization

✤ Very little progress has been achieved. Design ideas mainly.
✤ Coherent treatment of bundled/unbundled dependent ROOT

packages
19

ROOTbooks

20

👍

👍

👍

👎

👎

👎

ROOT as-a-service

✤ SWAN service in production!!
21

👍

👍

👍

👍

👍

👍

Documentation

22

👍

👍

👍

👍

👍

👎

New Platforms

23

👍

👍

Infrastructure

24

👍

👍

👎

👎

User Support: JIRA
✤ Bugs: 558 created and 510 resolved

✤ backlog increased by 48 issues (of total about 1000)
✤ ~4 new bugs/working day

✤ Definitively needed a  
campaign to triage and 
eventually close  
‘obsolete’ bugs and tasks.  

25

10 releases in 2016 !

User Support: RootTalk
✤ In addition to JIRA we have the

RootTalk Forum:
✤ Total posts 100112
✤ Total topics 22546
✤ ~ 20 posts/day
✤ ~ 5 new topics/day

✤ Weekly shifts to ensure that no
post gets unanswered
✤ A lot of effort ~1 FTE
✤ Latency reduced

dramatically!

26

Main areas of work for 2017

Maintenance and Support
✤ JIRA

✤ We have 1035 open bugs with no way to converge
✤ It takes effort to report a bug; they currently stay open for about 1

year in average
✤ User contributions

✤ We have 35 pull requests, with several open since >1 year
✤ Static Analysis

✤ We have 3800 open Coverity issues
✤ Most of team members have a long list of cleanup tasks in the existing

code

28

I/O Functionality
✤ Support of shared_ptr<T>

✤ Try to do better than the straightforward shared_ptr<T> → T*
✤ Assess impact of byte swapping on runtime performance

✤ If significant, change the file format ensuring backwards
compatibility

✤ Zero-copy I/O
✤ New API to deserialize multiple events

✤ Enhance morphing capabilities of schema evolution write rules
✤ Implement inlined ClassDef (ROOT-6284)
✤ I/O without dictionaries

✤ Collection proxies (std::COLL<T>), interpreted classes, etc.
29

I/O Performance
✤ Multi-treaded file operations

✤ Introduce a new TFile class, potentially less performant than the
existing one, but featuring thread safe methods

✤ Parallel write
✤ Optimizations

✤ Improved compression of branches holding a non-split collection
✤ Per entry compression
✤ Reduction of overhead of deep inheritance chains

✤ Provide help for benchmarking I/O performance in presence of
automatically generated POD data models (e.g. HepMC3, PODIO)

✤ Comparisons with other data formats (Parquet, Avro, Kudu, etc.)
30

CLING Interpreter
✤ Incorporate LLVM/Clang patches upstream

✤ such that ROOT can use external installation of LLVM/Clang
✤ collaborate with LLDB team to find common points of interest

✤ Windows native compatibility
✤ Allow to parse and compile functions at the prompt in all cases
✤ Lazier compilation (less memory and faster)

✤ E.g. virtual function tables
✤ Set JIT optimization level at runtime
✤ Revisit current ‘work arounds’ in roottest/ctest cling driver
✤ Improve autocompletion
✤ Improve current unloading functionality
✤ Make more use of the clang driver

31

Precompiled Modules
✤ Facilitate and support the use C++ modules for the compilation of

large software projects (e.g. FCC->LHCb->CMS/Atlas)
✤ Use C++ modules as ROOT ‘dictionaries’

✤ When modules are sufficiently stable and feature complete enough,
start to use them in combination with dictionaries therewith
avoiding parsing of large amounts of code at runtime

✤ Ensure dictionary generation backward compatibility

32

New C++ Interfaces
✤ New histograms and graphs
✤ New TFile interface
✤ New drawing approach “a la RooFit” (no Draw method)
✤ Backward compatibility studies:

✤ Assess needs for complete backwards compatibility for I/O
✤ Investigate code-to-code transformations to ease user code

migration

33

The SWAN Service*
✤ Migration of the service to IT
✤ Interfacing SWAN with Spark resources
✤ Improve the user experience when sharing in SWAN
✤ Productize the current SWAN service for deploying it in private

instances

(*) In collaboration with IT

34

New Analysis Approaches
✤ Improve ROOT notebook interface

✤ Tab-completion
✤ Definition of functions in code cells (without magic)
✤ JSROOT as default graphics

✤ Exploration and prototyping of functional chains
✤ Both C++ and Python interfaces
✤ Usability, expressibility, performance, etc.

✤ Assess the Apache Spark as scheduler in combination with the PyROOT
interface to complement PROOF for distributed calculations
✤ Distributed processing of large TTrees
✤ Interface with Spark clusters
✤ Interface IT container service

35

Machine Learning
✤ Finish and release all the parallelization work

✤ External to methods (cross-validation/hyperparameter tuning/envelope
methods)

✤ Method-internal (BDT/DNN/SVM)
✤ Multi-threading, multi-process and spark prototypes

✤ Regression
✤ Develop multi-objective regression
✤ Expand loss function class to all methods

✤ Hyperparameter Tuning
✤ Fully integrate with cross-validation, add hill-climbing, benchmark with Bayesian

optimization
✤ Preprocessing, Unsupervised Learning and Additional DNN architectures

✤ Develop deep auto-encoders from DNN base
✤ CNN
✤ RBM from DNN base
✤ Additional pre-processing functions

36

Machine Learning (2)
✤ Performance improvements

✤ Identify hotspots (both training and evaluation)
✤ Memory optimization (overall framework and BDT)

✤ Interfaces
✤ Improve Keras interface (data I/O)
✤ Assess interfacing C++ to python C interface versus a pure python

approach
✤ Documentation

✤ Updated examples (+notebooks in gallery)
✤ For beginners
✤ More advanced plus new features

37

Math Libraries
✤ Integrate vectorization and parallelization in ROOT fitting
✤ Power TMath with VecCore types (augment it, no replacement)
✤ Vectorization of TFormula (using VecCore)
✤ Parallel integration (e.g. Vegas)
✤ Use vectorization for numerical algorithms (e.g. integration)
✤ Investigate automatic differentiation using CLING

38

RooStats and RooFit
✤ Investigate the Hydra package (fitting and MC toys)
✤ Use new TFormula
✤ Browser for large models to change parameters values via a UI (if

effort available)
✤ Performance improvements

✤ Improvement of runtime performance in presence of large models
starting from real use cases, e.g. from CMS

✤ Use multiprocess for RooStats calculators
✤ Take advantage of vectorisation, parallelisation on CPUs and/or

GPU where it makes sense
✤ Removal of virtual functions (define models at compile time)

39

Python Bindings
✤ Improved type-system (e.g. addition of missing entities)
✤ Assess the limitations, usability and necessary improvements in

presence of the modernised C++ interfaces
✤ “Initializer-list” support (i.e. convert a python collection to a C++

collection)
✤ Release PyROOT as a genuine Python package

✤ Co-existing within Python2 and Python3
✤ build/install based on pip package management?

40

TTree
✤ Sparse reading

✤ Compression of individual entries
✤ Bring parallel tree merger to production quality
✤ Jitted TTreeFormula

✤ Similar to the new TFormula
✤ Type-safe TTree::SetBranchAddress
✤ Vectorised TTree::Draw and other interfaces

41

Parallelism
✤ Boost performance of analysis expressed via functional chain with

multicore based parallelism
✤ Take advantage of implicit multi-threading for writing large TTrees

✤ Parallel basket compression
✤ Parallel (vectorised and threaded) fitting
✤ Interface to distribute calculations on Spark resources following the

map-reduce pattern (python, then C++)
✤ Unify the forking framework for RooFit and TProcessExecutor
✤ Investigate how to interface to an externally provided scheduler

✤ typically provided by experiments’ frameworks

42

Graphics
✤ Many of the JIRA reports are related to graphics
✤ Design a web-based, platform independent UI and graphics to be

the main ROOT graphics platform
✤ Auto/aided placement of legends and axes titles
✤ Fixed size fonts by default
✤ Complete the TMathText class
✤ Spider plot not based on a TTree
✤ Slim-down procedure for the JSONs used for visualisation (e.g. in

notebooks
✤ Make JSROOT the default visualization for notebooks

43

Modularization
✤ Develop a model for building, distributing and deploying ROOT

modules that can extend an existing installation of ROOT on demand
✤ Evolve ROOT into `BOOT` (à la R)

✤ Package the current ROOT I/O plugins as ROOT modules
✤ To cope with package/module dependencies, interface ROOT with

popular package managers (e.g. Spack, Conda)

44

Documentation
✤ Review of the Users’ Guide, now very outdated
✤ Modernisation of Tutorials and inclusion of Python as a first class

citizen in all categories
✤ documentation/manual/user guide for core/multiproc, ML

✤ Release new users guide; Doxygen

45

Building and Packaging
✤ New build modes

✤ cross-building ROOT
✤ static build of ROOT

✤ Embed cloudflare zlib rather than the traditional one
✤ Make ROOT.py less monolithic, allow for several python packages

46

Infrastructure
✤ Migrating master ROOT repository to GitHub

✤ Adapt contribution procedures (PR, etc.)
✤ Integration with SFT’s Jenkins CI

✤ Testing infrastructure improvements
✤ Add coverage, memory checks, etc.
✤ Performance regressions
✤ Test guidelines and documentation

✤ Using containers for building/testing in Jenkins
✤ Migrate RootTalk forum to the discourse platform
✤ Get rid of <hash>.cern.ch / reverse proxy with shibbolet

47

Tutorials and Courses
✤ Continue to guarantee the Summer Student’ workshop
✤ CERN Technical Training

✤ Preparation of the proposed courses (introductory and advanced)
✤ ROOT Users’ workshop
✤ Participation to HSF Community White Paper
✤ CERN School of Computing (CSC, tCSC, iCSC)
✤ Reinforce engagement with analysis community, most notably with

CERN groups

48

