Proposal to use electromagnetic correction coils for RT trajectory correction

Proposal to use electromagnetic correction coils for RT trajectory correction

Background (1/2)

- 4000 MB quads, need about 80 correctors close to quads for beam-based feedback (BBF);
- Pre-choice of 80 locations impossible?
 → equip all 4000 quads with correctors
- Frequency range covered by BBF: sub-Hz to ~1 Hz
- In order to
 - have some feedback gain at f_cl =1 Hz (f_cl = f_s/gain)
 - to average over several BPM readings the BBF will run at a sampling frequency f_s=50 Hz;
 - i.e. the corrections are applied every pulse: requested settling time of corrections is 5 ms (in-between 2 beam pulses)

Background (2/2)

- Technical implementation in 2008:
 - additional windings onto quad jokes in order to produce "a sort of dipole correction field"
- Pre-Choice of non-laminated MB quads for stabilization and mechanical engineering (late 2008) excludes correction coil (bandwidth problem)

 Present design approach: Extend dynamic range of stabilization actuators by 100! and make BBF corrections by displacing the MB quads.
 Fullscale = +- 5 um compared to +- 50nm

Problems with present implementation

- Actuator dynamics, in particular for the (long) heavy magnets
- Absolute position of quad in beam reference frame not know (Hexapod design with sub-nm position readout in each leg)
- BPMs (50 nm required resolution) will move with quad. Needs sophisticated bookkeeping of past displacements.
 BPM close to "zero" and for longer elongations non-linear (monopole and quadrupole mode signals)
- Machine protection: non-energized position of quad (vertical) is max.down, not middle; might need interlocks.

Implementation

- Required corrector strength (Bdl):
 200 T/m *10 um * 2m (@ 1.5 TeV)
 - = 4 mT * m = 0,4 T * 1 cm -→ very week magnet assumed strength: scales with length of Q → corrector@ Q1: 0,1 mTm
- 1 cm long 0.1 0.4 T magnets
- end-field problems?
 - interference with quad field?
 - will create synchrotron radiation?(200 times higher bending radius)

First sketch

(after discussion with Michele Modena and Alexey Vorozhtsov)

Small window frame magnet or a variant with magnetic shielding towards the quad can go into that free space.

Alexey will make a first design ...

Conclusions

- The presently proposed solution for high excursion piezo actuators for BBF and Stabilization will possibly work, but it has several known (and unknown) complications.
- A simple proposal of small electromagnets for the BBF will decouple BBF and stabilization.
- The stabilization equipment can then be optimized for its original task.
- Having positive answers to the questions of:
 - extra synchrotron light at high energies? (when)
 - a preliminary magnet design (1 month) this option should become our CDR baseline.