

\Box Module beam instrumentation

- 1. BPM's
- 2. Wakefield monitors 2.
- 3. BLMs
- 4. Acquisition system

\Box Sector beam instrumentation

- 1. Transverse profile monitors
- 2. Current measurement
- 3. Bunch form / length
- 4. Beam phase

Module instrumentation Lars Søby 1 North September 2009 16 September 2009 16 September 2009 16 September 2009 1

CLIC module, Type 1

BPM collaborations

CLIC workshop 15-16 September 2009

Module instrumentation and a state of the Lars Søby 3

Main beam

Nominal beam parameters: Charges/bunch :3.7*10^{9 ,} Nb of Bunches: 312, Bunch length: 45µm–70µm, Train length: 156ns

Drive beam

Nominal beam parameters: Charges/bunch : 5.2*10¹⁰, Nb of Bunches: 2922, Bunch length: 1mm, Train length: 243.7ns

Fain beam choke BPM

Main beam BPM: FNAL

Main beam BPM: FNAL

Cavity BPM spectrum calculation

Mode Type		Freq., [GHz]	Qtot ¹	R/Q^2 , [Ohm], [Ohm/mm]	Output Voltage $2,3$, [V], [V/mm]	Frequency Filter Rejection	Phase Filter Rejection	Multi-bunch Regime Rejection
TM01		10.385	380	45	${}< 0.001$	0.005	0.1	0.1
TM11		13.999	250	3	11.5			
TM21		18.465	80	0.05	5	0.025	0.1	0.1
TM02		24.300	680	12	${}< 0.001$	0.001	0.1	0.05
WG1	TM11	12.285	6		3			
	TM21	12.285	6		0.3	\blacksquare	0.1	
WG ₂	TM11	15.878	$\overline{4}$		5	\blacksquare	۰	
	TM21	15.880	$\overline{4}$		1.2		0.1	
WG3	TM21	21.610	$\overline{7}$					

 $¹$ - Stainless steel material was used</sup>

 $2 -$ Dipole and quadruple modes values were normalized to 1mm off axis shift

 $3 -$ Signals are from a single coaxial output at resonance frequency.

Courtesy A. Lunin

Main beam BPM: FNAL

= Stainless steel material was used

Sum of the signals from two opposite coaxial outputs at resonance frequency.

Courtesy A. Lunin

FNAL Low-Q cavity BPM

- \cdot Developed by A Lunin
- •Wake field calculations coming within a few weeks
- •M. Wendt and A. Lunin will come to CERN beginning of November
- •FNAL will also develop acquisition system
- •Beam tests to be discussed in November
- •Fabrication drawing costs and production to be covered by CERN.
- •Four proto types to be build

Choke BPM

•Developed by Raquel and Igor

•Possible collaboration with RHUL to build proto type

Main beam BPM

The main beam BPMs are mounted before the quadrupoles and on the same vibration damped support as the quadrupoles. They are fixed to the quadrupole and cannot be aligned separately, and must be connected to the Wire Position System. The BPM should include a connection to the quadrupole chamber (different length according to module type), and a bellow at the other end, for inter module connection.

The drive beam quadrupole and BPM are mounted on the drive beam girders. BPMs cannot be moved independently of the PETS, the quadrupoles will either be on movers, or equipped with dipole corrector coils. The BPMs are mounted before quadrupoles. The acceptable level of wake field needs to be determined.

Drive beam BPM studies will start January 2010!

Module instrumentation Lars Søby 12

Wakefield Monitors (1/2)

One WFM per accelerating structure needed (up to 8 per girder), the mean of the WFM's on one girder computed

Main specifications:

- $-$ Accuracy : 5 μ m
- $-$ Resolution: 5 μ m
- Single bunch to long train operation
- No available lengt \Rightarrow WFM integrated in the structure

Courtesy F. Peauger

The four damping waveguides of the middle cell are used to measure the beam position inside the accelerating structures

R&D phase **development plan:**

1) Detailed design of WFM and procurement of a prototype for integration in a CERN accelerating structure and test on the Two Beam Test Stand with CALIFES probe beam (2009 – 2010)

Design and procurement of complete accelerating structures including WFM (2010)

Wakefield Monitors (2/2)

Design:

- Mode: Baseline = TM11 at \sim 18 GHz, alternative = TE11 at 23 GHz
- Transition: several design under study, must attenuate fundamental to
- \sim 160 dB

• Opposite port recombination by external 180° hybrid coupler (only if TM11 used)

• Electronic not studied \rightarrow needs maybe additional ressources

Courtesy F. Peauger

CLIC workshop 15-16 September 2009

BLM schedule

Courtesy B. Holzer

CLIC workshop 15-16 September 2009

Additional CLIC BLM tasks

Courtesy B. Holzer

Module acquisition systems

Module instrumentation Lars Søby 17

CLIC workshop 15-16 September 2009

Numbers of devices

Electronic Standardisation

- Single type of digital electronics acquisition card used for the majority of LHC instruments
	- Disadvantages

CLIC

- Needs from many users have to be assimilated
- Design more complicated
- Small changes affect many systems
- **Advantages**
	- More efficient & cheaper production runs
	- Faults easier to find as many users test a single product
	- Software development much faster

From CTF3 – to the development of a larger infrastructure as for CLIC

CLIC

S. Vilalte, J. Jacquemier, Y. Karyotakis, J. Nappa, P. Poulier, J. Tassan

Main beam

Drive beam

Module instrumentation Lars Søby 20

Transverse profile monitors, L~300mm

- Fast (12GHz) BPM, L \sim 100mm, Energy
- Form factor, Fast bunch shape measurement,L~500mm
- Slow current measurement, L~150mm, 1%
	- Slow current measurement, L~150mm, 0.1%

Beam Phase Segmented dump, Energy

CLIC workshop 15-16 September 2009

Module instrumentation and Lars Søby 21

- ^q Dedicated studies and designs of main beam BPM's and WFM 's are well advanced.
- \Box Drive beam BPM studies will start as from 1st of January.
- ^q BLM design schedule well established
- ^q A digital standard FE will be developed by LAPP and will significantly reduce the cable costs.
- \Box Space must be foreseen for electronics on the module and in a radiation shielded location within a few meters, i.e. in the floor.
- □ Dive beam SECTOR instruments should be designed for type 1-4 modules.

□ Main beam SECTOR instruments can only be foreseen close to extraction region on module types 0n-3n.

Module instrumentation and Lars Søby 23