

Module beam instrumentation

- 1. BPM's
- 2. Wakefield monitors
- 3. BLMs
- 4. Acquisition system

Sector beam instrumentation

- 1. Transverse profile monitors
- 2. Current measurement
- 3. Bunch form / length
- 4. Beam phase

CLIC workshop 15–16 September 2009

CLIC module, Type 1

BPM collaborations

	Main beam BPM	Main beam BPM	Drive beam BPM	WFM	FE electronics
Institute	FNAL	RHUL	SLAC	CEA	LAPP
Contact	M. Wendt	G. Blair	S. Smith	F. Peauger	S. Vilalte
Deliverable	3D design Cavity BPM Acq. system	3D design Choke BPM, Lab tests Beam tests?	1 year at CERN. 3D design. Lab tests	Design, build and test in CTF3	Design and test of standard acquisition module.
CERN	Mechanical design. Build 3 (4) proto types Lab tests	Mechanical design. Build proto type.	Mechanical design. Build 1 (3) proto types	?	Write specifications Test in CTF3
MOU	Unofficial	Not yet	Yes	Yes	Not yet

Main beam

Nominal beam parameters: Charges/bunch : 3.7*10⁹, Nb of Bunches: 312, Bunch length: 45µm-70µm, Train length: 156ns

	Accuracy	Resolution	Stability	Range	Bandwidth	Beam tube aperture	Available length	Intercepting device?	How many?	Used in RT Feedback?	Machine protection Item?	Comments	Ref
BPM	5µm	50nm	100nm		35MHz	8.0mm	95/65mm	No	4176	Yes	Yes	Choke BPM? Inductive BPM	CLIC note 764

WFM	5µm	<5µm	?		35MHz	8.0mm?	''_''	No	142812	Yes	No	TM01~16GHz	CLIC note 764
-----	-----	------	---	--	-------	--------	-------	----	--------	-----	----	------------	------------------

Drive beam

Nominal beam parameters: Charges/bunch : 5.2*10¹⁰, Nb of Bunches: 2922, Bunch length: 1mm, Train length: 243.7ns

	Accuracy	Resolution	Stability	Range	Bandwidth	Beam tube aperture	Available length	Intercepting device?	How many?	Used in RT Feedback?	Machine protection Item?	Comments	Ref
BPM	20µm	2μm	?	<5mm	35MHz	23mm	104/74mm	No	41480	Yes	Yes	Inductive ? Strip line ?	CLIC note 764

Main beam choke BPM

CLIC workshop 15–16 September 2009

Main beam BPM: FNAL

Main beam BPM: FNAL

Cavity BPM spectrum calculation

Mode T	уре	Freq., [GHz]	Qtot ¹	R/Q ² , [Ohm], [Ohm/mm]	Output Voltage ^{2,3} , [V], [V/mm]	Frequency Filter Rejection	Phase Filter Rejection	Multi-bunch Regime Rejection
TM01		10.385	380	45	< 0.001	0.005	0.1	0.1
TM11		13.999	250	3	11.5	-	-	-
TM21		18.465	80	0.05	5	0.025	0.1	0.1
TM02		24.300	680	12	< 0.001	0.001	0.1	0.05
WG1	TM11	12.285	6	-	3	-	-	-
woi	TM21	12.285	6	-	0.3	-	0.1	-
WG2	TM11	15.878	4	-	5	-	-	-
W G2	TM21	15.880	4	-	1.2	-	0.1	-
WG3	TM21	21.610	7	-	-	-	-	-

¹ - Stainless steel material was used

² - Dipole and quadruple modes values were normalized to 1mm off axis shift

³ - Signals are from a single coaxial output at resonance frequency.

Courtesy A. Lunin

Main beam BPM: FNAL

The sum of TM_{11} , TM_{01} , TM_{21} output voltages 24 20 100 µm off-Vout, [V] axis **Multi-bunch Regime** beam shift 5×10⁻⁹ 1×10⁻⁸ 1.5×10⁻⁸ 2×10⁻⁸ 4×10⁻⁸ 4.5×10⁻⁸ 2.5×10⁻⁸ 3×10⁻⁸ 3.5×10⁻⁸ 5×10⁻⁸ 0 2.4 Multi-bunch Regime $0.1 \,\mu m \, off-axis$ Vout, [V] beam shift .2 y ay di <mark>di kang di dikang di dahar kang di dahar kang di dahar yang di dahar yang di sang da kang di dahar kan</mark> 0.8 0.4 0 1×10⁻⁸ 5×10^{−9} 1.5×10⁻⁸ 2×10⁻⁸ 4×10⁻⁸ 4.5×10⁻⁸ 2.5×10⁻⁸ 3.5×10⁻⁸ 5×10⁻⁸ 3×10⁻⁸ 0 Time, [s]

Mode Type	Freq., [GHz]	Qtot ¹	Beam Shift, [µm]	Maximum Output Voltage ² , [V]	Total Estimated Rejection	BPM Resolution (Limited by TM ₀₁ &TM ₂₁ Modes Leakage), [nm]
TM01	10.385	380	0.1	< 1	5E-4	~ 2
TM11	13.999	250	100	24	-	-
TM21	18.465	80	100	< 0.1	2.5E-3	~ 1

Stainless steel material was used

Sum of the signals from two opposite coaxial outputs at resonance frequency.

Courtesy A. Lunin

FNAL Low-Q cavity BPM

Developed by A Lunin

•Wake field calculations coming within a few weeks

•M. Wendt and A. Lunin will come to CERN beginning of November

•FNAL will also develop acquisition system

•Beam tests to be discussed in November

•Fabrication drawing costs and production to be covered by CERN.

•Four proto types to be build

Choke BPM

Developed by Raquel and Igor
Possible collaboration with RHUL to build proto type

CLIC workshop 15–16 September 2009

Main beam BPM

The main beam BPMs are mounted before the quadrupoles and on the same vibration damped support as the quadrupoles. They are fixed to the quadrupole and cannot be aligned separately, and must be connected to the Wire Position System. The BPM should include a connection to the quadrupole chamber (different length according to module type), and a bellow at the other end, for inter module connection.

The drive beam quadrupole and BPM are mounted on the drive beam girders. BPMs cannot be moved independently of the PETS, the quadrupoles will either be on movers, or equipped with dipole corrector coils. The BPMs are mounted before quadrupoles. The acceptable level of wake field needs to be determined.

Drive beam BPM studies will start January 2010!

Wakefield Monitors (1/2)

One WFM per accelerating structure needed (up to 8 per girder), the mean of the WFM's on one girder computed

Main specifications:

- Accuracy : 5µm
- Resolution: 5 µm
- Single bunch to long train operation
- No available lengt WFM integrated in the structure

Courtesy F. Peauger

The four damping waveguides of the middle cell are used to measure the beam position inside the accelerating structures

R&D phase development plan:

1) Detailed design of WFM and procurement of a prototype for integration in a CERN accelerating structure and test on the Two Beam Test Stand with CALIFES probe beam (2009 – 2010)

2) Design and procurement of complete accelerating structures including WFM (2010)

Wakefield Monitors (2/2)

Design:

- Mode: Baseline = TM11 at ~18 GHz, alternative = TE11 at 23 GHz
- Transition: several design under study, must attenuate fundamental to
- ~160 dB

solution

- Opposite port recombination by external 180° hybrid coupler (only if TM11 used)
- Electronic not studied -> needs maybe additional ressources

Courtesy F. Peauger

CLIC workshop 15-16 September 2009

BLM schedule

1	Loss locations in standard operation	MPWG; Jean Bernard Jeanneret ? + Barbara Holzer ?	Nov '09
2a	List 'all' failure scenarios and identify most critical ones	MPWG; Jean Bernard Jeanneret + Michel Jonker	Nov '09
2b	Simulation of the 2-3 most critical ones	MPWG; Daniel Schulte (team)	Q2 '10
3a	Limiting equipment for loss (standard and failure)	MPWG (determine limiting condition); Daniel Schulte (team), equipments experts	Q4 '09
3b	Limits for steady state beam loss (radiation)	MPWG; Thomas Otto	Q2 '10
3c	Simplified (geometry) model simulations (particle showers) of the 2-3 most critical	BLM; Mariusz Sapinski (SCR: Sophie Mallows -FLUKA)	Q3 '10
4a	Choice of measurable (BLM, BPM, etc); establish required SIL (damage protection and availability) levels, estimate SIL levels of various protection systems, determine redundant systems when needed.	MPWG; ?? for BLM: Mariusz Sapinski	Q1 '10
4b, 4c	Choice of BLM system; simulations for the most critical loss scenarios and estimation of monitor response (accuracy ~ factor 10)	BLM; Mariusz Sapinski	Q3 '10

Courtesy B. Holzer

CLIC workshop 15–16 September 2009

Additional CLIC BLM tasks

BLM system specs for fiber studies (Liverpool collaborators)	Nov'09
Investigate existing solutions for the CLIC components; document cost and number of monitors; identify costly and	Jan '10
the full fails of the second s	Nov'09
Investigate and document loss locations in standard operation	Nov09
Prepare list of questions for failure scenarios (item 2)	Oct '09
Investigate and document limiting equipment for loss (item 3a)	Nov'09
Collection of requirements for BLM system from BD group	Q1 '10
Functional specs	Q4 '10
Cost estimate	Q4 '10

Courtesy B. Holzer

Module acquisition systems

Numbers of devices

Electronic Standardisation

- Single type of digital electronics acquisition card used for the majority of LHC instruments
 - Disadvantages
 - Needs from many users have to be assimilated
 - Design more complicated
 - Small changes affect many systems
 - Advantages
 - More efficient & cheaper production runs
 - Faults easier to find as many users test a single product
 - Software development much faster

CLIC workshop 15–16 September 2009

R. Jones

From CTF3 – to the development of a larger infrastructure as for CLIC

lapp.

S. Vilalte, J. Jacquemier, Y. Karyotakis, J. Nappa, P. Poulier, J. Tassan

Main beam

	Accuracy	Resolution	Bandwidth	Beam	Stability	Non-	How	Used in RT	Machine	Comments	Ref
				tube		intercepting	many?	Feedback?	protection		
				aperture		device?			Item ?		
Intensity	0.1%						48	No	Yes		
Beam Size / Emittance	10%	2%				yes	48	No	No		
Energy	0.10%					yes	48	Yes			
Energy Spread								?			
Bunch Length							48			single shot	
Beam Phase		0.1 °					48	Yes	No		

Drive beam

	Accuracy	Resolution	Range	Bandwidth	Beam tube aperture	Stabilit y	Non- intercepting device?	How many?	Used in RT Feedback?	Machine protection Item ?	Comments	Ref
Intensity	0.1%			20MHz	23mm		Yes	48	No	Yes		
Intensity	1%			20MHZ	23mm		Yes	~864	No	Yes	Still Valid?	
Beam Size / Emittance	50um				23mm		No	288	No	No		
Energy	10um		10mm	12GHz	?			48	No	No		
Energy Spread					?							
Bunch Length	1%				23mm			24	No	No	single shot	
Beam Phase					23mm			96				

- Fast (12GHz) BPM, L~100mm, Energy
- Form factor, Fast bunch shape measurement, L~500mm
- Slow current measurement, L~150mm, 1%
 - Slow current measurement, L~150mm, 0.1%

Beam Phase Segmented dump, Energy

Module instrumentation

CLIC workshop 15-16 September 2009

- Dedicated studies and designs of main beam BPM's and WFM 's are well advanced.
- Drive beam BPM studies will start as from 1st of January.
- BLM design schedule well established
- A digital standard FE will be developed by LAPP and will significantly reduce the cable costs.
- Space must be foreseen for electronics on the module and in a radiation shielded location within a few meters, i.e. in the floor.
- Dive beam <u>SECTOR</u> instruments should be designed for type 1–4 modules.

 Main beam <u>SECTOR</u> instruments can only be foreseen close to extraction region on module types 0n-3n.