geant-val.cern.ch:
GEANT Validation webpage

D. Konstantinov for geant-val developers

Introduction

The old Geant4 validation page (g4-val3.cern.ch) created by technical
student George back in 2013 revealed some remarkable
shortcomings:

not scalable - an addition of new test/histogram requires manual
creation of new DB tables (keeps “histograms” in MySQL database)
and also requires new web application for every new test.

no input/output format - no possibility to inject locally produced
data or results produced on CERN LXF no access to histograms

GRID submission only - all API scripts

g4.Val Web | vioo Testist Hep Log

Simplified calorimeter -

Tb#1 Tab#2 | Tap#d
Energy response
+— 103ref01

H 10.2.ref10

0.04(— H H —%— Reference datasel

— e

o03liil

0.036
E .T
0.034|— ¥
B]
0.032—#: W
L .
10

Epee™ (GeV)

Calorimeter: AtlasHEC | Physics list: FTFP_BERT | Beam projectile: pi- | Observable: Energy response

New Developments

New developments started last summer with work of summer
student (loana)

She create a nice validation suite prototype based on modern IT
technologies such as:

node.js + angular.js - light-weighted web server and web
application;

nede PyncuLarss

bootstrap - nice looking forms, buttons, navigation, adaptive web

design; y

Bootstrap

New Developments

production site: geant-val.cern.ch
development site: val.cern.ch:63080

As a database we use CERN “database on demand” with PostgreSQL

The DB contains the following information for each plot (histogram/
scatter plot), the DB schema is a reworked schema of DOSSIER DB.

plot with errors itself, package name, package version, physics model,
projectile particle , projectile energy, target material, secondary particle etc

Web client
Node.js

JSON input/output format

In order to upload data to database we use JSON format.
Example of “simplified calo” histogram is presented below:

{
"id": 134652,
"article": {
"inspirelId": -1
Y.
"mctool™: {
"name”: "CEANT4",
"version": "10.3",
"model”: "FTFP_BERT"
Y.
"testName": "simplified calorimeter",
"metadata": {
"observableName": "energy resolution”,
"reaction": "particle production”,
"targetName": "AtlasECAL",
"beamParticle": "pi-",
"beamEnergies": [
1,
2
1,
"secondaryParticle": "None",
"parameters”: [

]
Y.

all data can be downloaded in the same format.

http://val.cern.ch:63080/api/get/ 134652

"plotType": "SCATTER2D",
"chart": {

"nPoints": 25,
"xValues": [
1,
2
1,
"yValues": [
0.333964,
0.371813
1.
"xStatErrorsPlus”: [
0

0

1,

"yStatErrorsPlus": [
0.00690332,
0.00557068

’
"xStatErrorsMinus": [
0

0
1,
"yStatErrorsMinus": [

0.00690332,

0.00557068

’
"xSysErrorsPlus”: [
0

0

1,
"ySysErrorsPlus”: [
o,

0
’
"xSysErrorsMinus”: [
0

0
1,
"title": "energy resolution”,
"xAxisName": "E_{kin}"{beam}, GeV",
"yAxisName": "<E_{vis}>\/E_{beam}"

Visualization tool

Initially as a plotting tool initially we selected JavaScript data
visualization “plot.ly”

energy resolution (AtlasECAL)

BY 0.652441 +0.0018002 / -0.0018002 [eZAN R0k}

::..::Sf‘ ’
; v &
advantages: disadvantages:
» interactive » slow as executed on client side
» nice plots without significant > very slow handling of LATEX
efforts (redrawing several axis several times)
» input data in JSON format » no possibility to change axis and title positions
» can handle LATEX » no simple way to save in local file

» big object - all data kept in memory on client
side -> creation of many plots are slow

ROQOT as visualization tool

Insertion of test22 has been shown that “plot.ly” is extremely slow
plotting more than ~20 plots on one page.

Hang my browser several times digesting data. ®
Decided to try static ROOT plots.

The very first version of “plotter” prototype is written.
(not production quality yet)
plotter.exe 146466 146470 146474 146478

First results are very promising:

am: pi-, energy: MULTIPLE, target: AtlasECAL, secondary: None
T T T T T T —

>/Ebeam

—&— 103

0.9 —+— 10.3.beta01

> very fast drawing ”
» more freedom with legends, titles

0.5

0.4

E »

~ F T I T O

0.3

>
9]
< Wb b b b b lers i Lmed
geant-val.cem.ch

&%
gL
fo]

can be seen on dev web-page:
Put tick near ROOT plots

How to introduce new test

e compile and place a test executable for given GEANT version into
geant4 cvmfs:

/cvmfs/geantd.cern.ch/opt/10.3.refd2/xB6_64-s1cb-gccd49-opt/bin/
— Hadreo

—— StatAccepTest

- test22_HARP

— test22_main
— test30
— testd4b

Not simple procedure as we have different repositories for tests,
different way to configure and build!

e run the test using Ixbatch or DIRAC (for GRID)
Not simple as tests have different configuration style!

e using a dedicated python script extract histogram and fill input
JSON files

Not simple as tests have different output, need a script for every test!
o fill DB with JSON files content.

That is it! You can browse/compare your data at geant-val.cern.ch!

“Simplified calo”; exceptions stats monitoring

For “simplified calo” we created special web layout for G4Exceptions
monitoring - different error types, frequency with possibility to look
at full error message.

Version test_st... had012:... had012:... HAD_KIN...
GEANT4: 10.3.cand03 Lot sk [t [l
3 B 0 B 0 B 0 B
GEANT4: 10.3.cand02 q |l o o o L
B B B B
GEANT4: 10.3.cand01 Lot ot Lut [fT]
2 B 0 B 0 B 0 B
GEANT4: 10.3.beta01 o Lo g Lt 1082 B 594 “é
AtlasFCAL 17.29%
AtlasHEC 17.29% ,
CmsECAL 17.07% 25 | 50 | 100
TileCal 17.07%
LhcbECAL 16.19%
AtlasECAL 15.08%
FTFP_BERT_TRV 18.85%
FTFP_BERT_HP 14.63%
FTFP_BERT 14.19%
QGSP_BIC 12.64%
QGSP_BERT_HP 9.76%
QGSP_FTFP_BERT 9.53%
QGSP_BERT 8.65%
FTFP_BERT_ATL 7.98%

QGSP_INCLXX 3.77%

Plans

e improve ROOT plots quality.
 add possibility to have ratio plots.
e add stat test:

o start with chi2.

° investigate possibility to use stat code developed by
Marilena.

» setup new DIRAC server or use CLIC DIRAC instance
for GRID production.

* integration of new tests, new tests, new tests...

o different presentation of results - starting from
“summary” stat results

* a lot of minor improvements and bug fixes in pipe line

Backup slides

Node.js

* Node.js is an open-source, cross-platform
JavaScript environment for developing a
variety of tools and applications.

nNogeC
@®

Angular.js

* Angular.js is a complete JavaScript-based
open-source front-end web application
framework. It lets you use HTML as your
template language.

NGULARIJS

by Google

Bootstrap

* Bootstrap is a free and open-source
front-end web framework for designing
websites and web applications.

.

Bootstrap

