Introduction to the **AWAKE project and its** technical challenges M. Turner, E. Gschwendtner representing the **AWAKE Collaboration**

Outline

- 1. What is AWAKE?
- 2. Physics behind AWAKE
- 3. Realization of the project
- 4. Technical Challenges
- 5. Latest Results
- 6. Outlook & Summary

What is AWAKE?

- AWAKE stands for: Advanced Proton Driven Plasma Wakefield Experiment.
- AWAKE is a R&D project to study proton driven plasma wakefields at CERN.
- □ **Final Goal:** Design high quality & high energy electron accelerator based on acquired knowledge.

Developed by MPP

M. Turner for the 3 AWAKE collaboration

What is AWAKE?

- AWAKE stands for: Advanced Proton Driven Plasma Wakefield Experiment.
- AWAKE is a R&D project to study proton driven plasma wakefields at CERN.
- □ **Final Goal:** Design high quality & high energy electron accelerator based on acquired knowledge.

Why is plasma wakefield acceleration interesting?

$$eE_{max} \approx 1 [eV/cm] \cdot n^{1/2} [cm^{-3}]$$

 $\lambda_{\rm pe} \approx 1 \, \text{mm} \, \sqrt{\frac{10^{15} \, \text{cm}^{-3}}{n_{\rm pe}}}$

Larger plasma e⁻ density implies smaller plasma e⁻ wavelength ⇒ smaller structures i.e. 1 GeV/m for a plasma density (n) of 10^{14} electrons/cm³.

For LWFA: n~10¹⁸ electrons/cm³ ⇒ 100 GeV/m

M. Turner for the 4 AWAKE collaboration

Physics behind AWAKE

What is a plasma?

Quasi-neutrality: the overall charge of a plasma is about zero.

Collective effects: Charged particles must be close enough together that each particle influences many nearby charged particles.

Electrostatic interactions dominate over collisions or ordinary gas kinetics.

What are plasma wakefields?

Fields created by a plasma wave.

M. Turner for the 5 AWAKE collaboration

Physics behind AWAKE

6

What is a plasma?

Quasi-neutrality: the overall charge of a plasma is about zero.

Collective effects: Charged particles must be close enough together that each particle influences many nearby charged particles.

Electrostatic interactions dominate over collisions or ordinary gas kinetics.

Accelerating for e⁻ Decelerating for e⁻

What are plasma wakefields?

Fields created by a plasma wave.

The self-modulation instability

Why protons?:

Lasers: ~40 J/pulse, Electron drive beam: 30 J/bunch, Proton drive beam: SPS 19 kJ/pulse, LHC 300 kJ/bunch.

⇒ In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the plasma wavelength. --> mm scale proton bunches do not exist.

CERN SPS proton bunch: very long!

Longitudinal beam size ($\sigma_z = 12 \text{ cm}$) is much longer than plasma wavelength ($\lambda_{pe} = 1 \text{ mm}$, $n_{pe} = 7 \times 10^{14} \text{ e}^{-}/\text{cm}^{3}$) \Rightarrow Self Modulation Instability (SMI)

Micro-bunches can then resonantly drive the plasma wave.

The self-modulation instability

Why protons?:

Lasers: ~40 J/pulse, Electron drive beam: 30 J/bunch, Proton drive beam: SPS 19 kJ/pulse, LHC 300 kJ/bunch.

⇒ In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the plasma wavelength. --> mm scale proton bunches do not exist.

CERN SPS proton bunch: very long!

Longitudinal beam size ($\sigma_z = 12 \text{ cm}$) is much longer than plasma wavelength ($\lambda_{pe} = 1 \text{ mm}$, $n_{pe} = 7 \times 10^{14} \text{ e}^{-}/\text{cm}^{3}$) \Rightarrow Self Modulation Instability (SMI)

Micro-bunches can then resonantly drive the plasma wave.

Components of a R&D proton driven plasma wakefield accelerator

- Rubidium vapor
 Laser
 10 m of Plasma
- Proton beam (400 GeV/c)

⇒ Driver

- □ Electron beam (10-20 MeV)
 - ⇒ Witness

- Diagnostics!
 - Proton
 - Laser
 - Electron

Challenge Nr 1!!!: Integration into the CNGS tunnel.

AWAKE collaboration

The AWAKE facility

Phase 1: Understand the physics of self-modulation instability processes in plasma.

Phase 2: Probe the accelerating wakefields with externally injected electrons.

M. Turner for the 10 AWAKE collaboration

Physics requirement:

- 1. The plasma density uniformity needs to be better than 0.2% over the 10 meters of plasma.
- 2. The transition between the plasma and the vacuum must be as sharp as possible.
- 3. Ion motion in the plasma must be negligible.
- 4. Sharp plasma edge inside the proton bunch (Sudden turn on of the plasma).

Physics requirement:

- 1. The plasma density uniformity needs to be better than 0.2% over the 10 meters of plasma.
- 2. The transition between the plasma and the vacuum must be as sharp as possible.
- 3. Ion motion in the plasma must be negligible.
- 4. Sharp plasma edge inside the proton bunch (Sudden turn on of the plasma).

Physics requirement:

- 1. The plasma density uniformity needs to be better than 0.2% over the 10 meters of plasma.
- 2. The transition between the plasma and the vacuum must be as sharp as possible.
- 3. Ion motion in the plasma must be negligible.
- 4. Sharp plasma edge inside the proton bunch (Sudden turn on of the plasma).

3) If ions move, the structure of the wakefield would be modified. Choice Rubidium: 1) Heavy alkali metal (easy to ionize outermost electron)
2) high vapour pressure so we need a lower temperature to reach a certain density than f.e. with sodium.

Physics requirement:

- 1. The plasma density uniformity needs to be better than 0.2% over the 10 meters of plasma.
- 2. The transition between the plasma and the vacuum must be as sharp as possible.
- 3. Ion motion in the plasma must be negligible.
- 4. Sharp plasma edge inside the proton bunch (Sudden turn on of the plasma).

- 3) If ions move, the structure of the wakefield would be modified. Choice Rubidium: 1) Heavy alkali metal (easy to ionize outermost electron)
 2) high vapour pressure so we need a lower temperature to reach a certain density than f.e. with sodium.
- 4) to seed the self-modulation instability, because:

	plasma	gas	
<		proton bunch	
	lase	rpulse	

- 1) Self- Modulation Instability does not grow from noise.
- 2) Fix the phase of the wakefield.
- 3) Avoid competing instabilities.

Technical Challenge Nr 2: Plasma density uniformity

CERN A IVAKE

Fluid heated system:

Developed by MPP Munich

- Control the vapour density by precisely controlling the temperature to <0.1 K.</p>
- **•** 79 temperature probes.

Control system for the vapour cell

M. Turner for the 15 AWAKE collaboration

Technical Challenge Nr 2: Plasma density ramp

Requirement: 2) The transition between the plasma and the vacuum must be as sharp as possible. \Rightarrow Fast valves **do not** work (density ramp of 50 cm not acceptable).

Solution: Cold expansion chambers with an open flow - the rubidium condenses on a cold surface. ⇒ not good, but acceptable

Physics principle: Gas expanding through an aperture(\emptyset = 1 cm) to infinite volume \Rightarrow length of the ramp in the order of the opening of the aperture.

M. Turner for the 16 AWAKE collaboration

Technical Challenge Nr 2: Plasma density ramp

Requirement: 2) The transition between the plasma and the vacuum must be as sharp as possible. \Rightarrow Fast valves **do not** work (density ramp of 50 cm not acceptable).

Solution: Cold expansion chambers with an open flow - the rubidium condenses on a cold surface. ⇒ not good, but acceptable

Rubidium expansion chambers:

Technical Challenge Nr 3: Alignment of a proton, laser and electron beam

Spatial alignment

Proton bunch: measured on the proton beamline BTVs

Overlap the laser with the proton beam (reference) Laser: measured on the proton beamline BTVs

M. Turner for the 18 AWAKE collaboration

the timing between the proton and laser pulse.

MPP

AWAKE

Technical Challenge Nr 4: Diagnostics Interesting information: What is the plasma density? Did the proton beam self-modulated over the 10 m of plasma? What is the energy of the accelerated electrons? e⁻spectrometer Laser **RF** gun 10m

SMI

4 different diagnostics based on:

- Scintillation (Indirect SMI two screen measurement)
- Streak camera and Optical Transition radiation (OTR)
- 2x Coherent transition Radiation (CTR)

SPS

protons

BTV BTV Proton beam dump Laser dump

Acceleration

(Scintillation):

Proton diagnostics

BTV,OTR, CTR

Laser

Proton

beam dump

Goal: Image protons that got defocused by the strong plasma wakefields To prove that plasma wakefields were present in plasma.

Two imaging stations to measure the radial proton beam distribution 2 and 10 m downstream the end of the plasma.

> M. Turner for the 19 AWAKE collaboration

Technical Challenge Nr 4: **Diagnostics**

Foil emits waves up to the plasma wavelength of the foil:

- including radiation in the optical range (OTR).
- Radiation is coherent (CTR) for wavelengths bigger than the structure of the micro-bunches.

M. Turner for the 20 AWAKE collaboration

Technical Challenge Nr 4: **Diagnostics**

Foil emits waves up to the plasma wavelength of the foil:

- including radiation in the optical range (OTR).
- Radiation is coherent (CTR) for wavelengths bigger than the structure of the micro-bunches.

2 more diagnostics not covered in this talk.

50

Time (ps)

150

200

-2

Streak camera and OTR:

CERN A IVAKE

M. Turner for the AWAKE collaboration

Technical Challenge Nr 4: **Diagnostics**

□ What is the energy of the accelerated electrons?

Accelerated electrons are sent through a spectrometer magnet and deposit energy on a scintillating screen which is imaged by a camera.

1300

Electron acceleration is planned for 2018. (Installation and commissioning of the electron beam line: 2017) Electrons will be injected with an energy around 10-20 MeV.

1200

x pixels

1250

M. Turner for the 22 AWAKE collaboration

First Results

Particles with large radii detected in the presence of plasma!

M. Turner for the 23 AWAKE collaboration

First Results

- □ Timing at the ps scale
- Effect starts at laser timing
- Density modulation at the 10ps-scale visible

K. Rieger, MPP

M. Turner for the AWAKE collaboration

The future of AWAKE

AWAKE is an **R&D** experiment to develop a plasma based acceleration technique driven by a proton bunch.

Short term: Further study of the self modulation instability (2017) and electron acceleration (2018).

AWAKE run 2: (after LS2) use for high-energy physics:

- demonstrate **scalability** of the AWAKE concept.
- demonstrate to preserve the electron beam quality.
- □ proton driven electron beam with **50-100 GeV/c**.

M. Turner for the 25 AWAKE collaboration

AWAKE Planning

*8 weeks of data taking per year.

M. Turner for the 26 AWAKE collaboration

Summary

- AWAKE is a R&D project to study proton driven plasma wakefields at CERN. AWAKE uses the first time ever protons to drive the plasmas wakefield.
- □ The goal is to accelerate electrons using GV/m plasma wakefields.
- □ The **plasma** is created by ionizing 10 m of rubidium vapour with a laser pulse and the wakefields are created by a self-modulated 400 GeV/c proton bunch.
- AWAKE was able to obtain first results on the self-modulation instability during a 48h beam-time last December.
- **Electron acceleration** is planned for 2018.

M. Turner for the 27 AWAKE collaboration