What is the best displacement transducer for a seismic sensor?

Peter Novotny

Final PACMAN workshop, CERN, Geneva

21.3.2017

Content

- Resolution comparison of displacement transducers.
- Seismic sensors resolution.
- Increasing resolution with multi-pass interferometer
- Resolution, resolution, resolution.

How seismic sensor works?

Main components of a seismic sensor.

- Mechanics high pass filter.
- Relative motion transducer.

PACMAN requirements.

- Bandwidth = 0.1 ~ 200 Hz
- Resolution ≤ 0.1nm RMS@1Hz
- Magnetic fields resistance
- (Radiation hard)

What do we understand by resolution rms@1Hz?

RMS or "average" motion in the bandwidth of interest.

How to improve resolution?

- 1. Reduce noise e.g. by cooling the electronics.
 - Not the most feasible solution.

Resolution=Noise/Sensitivity

- 2. Increase sensor's sensitivity.
 - Implement high resolution displacement transducer.

SOTA interferometer

How to improve resolution?

 High resolution transducers for displacement measurement

- Options:
 - Resistive, Capacitive LVDT Optical encoders Piezoelectric, Eddy current Interferometers ...
- After applying following requirements:
 - Contactless
 - Sub-nanometer resolution
 - Magnetic field resistance

How to improve resolution?

All technologies implemented before but because results are influenced by:

- Ambien environment (temperature, humidity, air refraction index, ...)
- Mechanical design
- Data acquisition hardware
- Signal processing algorithm

Comparison is very difficult and unclear.

Implementation of displacement transducers into the same mechanical body

Direct comparison = no data ambiguity

Measurement of transducers resolution.

Mass locked – no relative motion.

Transducer	Interfero- meter	Encoder	Capacitive
RMS resolution (pm)	69.3	28.8	39.8
Resolution specified by producers (pm)	44	18.2	22

Transducers vs. seismic sensor resolution.

Two main components of seismic sensor:

- Mechanics high pass filter (TF⁻¹)
- Displacement transducer

transducer resolution

Goal: ≤ 0.1nm

seismic sensor resolution

10²

10¹

Frequency (Hz)

How to achieve required resolution for seismic sensor?

1. Use encoder in a feedback configuration.

- Voice coil actuator not ideal for magnetic environment.
- 2. Increase transducer resolution even further.
 - Multi-pass interferometer feasibility study.

Multi-pass Michelson interferometer

Working principle of multi-pass Michelson interferometer

Implementation of multi-pass
Michelson interferometer into seismic sensor.

Obtaining displacement from quadrature signal.

 $displacement = \varphi \times sensitivity$ $[nm/2\pi]$

Increasing sensitivity with number of reflections.

Transducer	Encoder	attocube	Michelson interferometer	Multi-pass interf. N=8
Sensitivity [nm/ 2π]	250	200	316,5	39,6

Multi-pass interferometer resolution.

Mass locked – no relative motion.

Transducer	attocube	Multi-pass 8x
RMS resolution (pm)	59.6	6.5

Seismic sensor resolution.

Possible applications.

1. PACMAN (CLIC) and also other research projects.

2. Industry: Use multi-pass interferometer in a feedback configuration.

Room for improvement.

2. Improve collimation of light into fibre.

3. Use better optimized mirrors.

4. Save money by moving to a telecommunication wavelength where components are cheaper.

Conclusions

- Three sub-nanometer displacement transducers were integrated into the same mechanical body and their resolutions were measured.
- Optical encoder had the best resolution but still not sufficient when combined with mechanics of a sensor.
- Multi-pass Michelson interferometer was implemented into the sensor in order to increase resolution even further.
- Sufficient resolution was achieved with 8 reflections and concept was proven to be feasible.

Thank you for your attention!

Measurement of transducers sensitivity.

Transducer	Interfero- meter	Encoder	Capacitive
RMS of ambient vibration excitation (nm)	221.29	221.46	223.82

