

Magnets alignment using vibrating wire: latest results

Alexander Temnykh , Cornell University, Ithaca NY, USA

Final PACMAN Workshop, CERN March 20-22 2017

Particle Accelerator Components' Metrology & Alignment to the Nanometre Scale

CRANFIELDUNIVERSITY | ELTOS | ETH | IFIC | SIGMAPHI | TUDELFT | UNIVERSITA' DEL SANNIO | UNIVERSITA' DI PISA | HEXAGON | SYMME | DMP | METROLAB | LAPP | NATIONAL INSTRUMENTS | ETALON

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606839

- Introduction / new challenges
- Alignment of short quadrupole & dipole combine function magnets (CFM) with Vibrating Wire using compensating dipole: proof of principle experiments
- Alignment of long CFM using Vibrating Wire and Hall Probe: demonstration experiments
- Conclusion

Introduction / New challenge

Vibrating Wire technique* is well established and was used in many occasions for quadrupole magnets alignment.

Field is "zero" on magnetic axis, straight geometry

New challenge – combine function magnets (CFM) for 4-th generation of SR sources

Figure 3.79. Cross section of the M4 Q-bend magnet.

APS - U ESRF Upgrade CHESS - U

Dipole field ~ 0.529 T Quad Gradient \sim 34.6 T/m Bore radius 18mm

Dipole field ~ 0.637 T Quad Gradient ~ 8.76 T/m

**A. Temnykh, Vibrating wire field-measuring technique, NIMA 399 (1997) 185-194*

3/20/2017 3rd PACMAN Workshop, CERN March 20-22 2017 3

Short CFM (APS-U type) alignment

Idea: use compensating dipole magnet

Setup

- 1) Vibrating Wire
- 2) Short combine function magnet, APS-U type
- 3) Well characterized dipole magnet with vertical field

Procedure

Step 1: Place wire on designed beam axis

Step 2: Excite dipole magnet with a current producing nominal field integral with opposite sign

Step 3: Excite quad magnet with current required for nominal gradient and move it in horizontal and vertical planes to "zero" wire vibration

Vertical field integral of the dipole magnet should be equal and opposite to CFM nominal dipole field integral.

Short CFM (APS-U type) alignment

Demonstration experiment: CERN, Feb 6 2015 *Domenico Caiazza (1), Carlo Petrone (1) and Alexander Temnykh (2) (1) CERN, (2) Cornell University*

3/20/2017 3rd PACMAN Workshop, CERN March 20-22 2017 5

Short CFM (APS-U type) alignment: demonstration experiment

Procedure:

- Quad current $= 2.5A$ (\sim 1T/m or less)
- 2. Moved wire by 1mm step in horizontal plane
- 3. At each wire position the dipole current was adjusted to "zero" wire vibration, i.e. to compensate vertical field integral

O.0047 A of dI RMS translates into 0.0068 (!) mm RMS misalignment For CFM with stronger gradient $(\sim 50$ T/m) this method will provide submicron alignment accuracy.

Long CFM (CHESS-U type) alignment in respect to quadrupole magnets

2.3m CHESS–U CFM Dipole field $= 0.637$ T; Gradient 8.76 T/m Poles excursion 21.5mm

CFM and quad magnets alignment tolerance to be 0.05mm or better

Alignment procedure

Magnets on Girder, Top view

Local coordinate system is defined by the girder fiducials

Alignment procedure

Step 1: Establish Vibrating Wire position in respect to girder fiducials

Step 2: Establish Hall probe position relative to wire

Step 3: Survey quadrupole magnets with WV and place them at required position

Step 4: Survey CFM (DQ) with Hall probe and place the magnet at required position

Vibrating Wire precise positioning

Girder monument touching with wire

a wire position detector

1) Measure magnetic field generated by current diving through the wire.

Bx fit: x0 =- 0.083 +/- 0.007 mm; y0 = 1.538 +/- 0.011 mm By fit: x0 =- 0.072 +/- 0.007 mm; y0 = 1.524 +/- 0.007 mm

2) Measure location of reference quad magnetic axis ("zero" field) position with Vibrating Wire and Hall Probe

Reference Quad magnetic axis position measured with Hall Probe (left) and Vibrating Wire (right)

Hall Probe and Vibrating wire position can be correlated with submicron precision.

Conclusion

- Precise alignment of a short CFMs can be done using Vibrating Wire technique in combination with compensating dipole. This, as well, can be used for of a small aperture magnets characterization.
- Alignment of quadrupole magnets and long CFM in respect to girder's fiducials requires the following:
- a) Accurate positioning of vibrating wire relative girder fiducials
- b) Accurate positioning of Hall probe in respect to vibrating wire
- c) Alignment of quadrupole magnets using Vibrating Wire
- d) Alignment of CFM based on the field mapped with Hall Probe Demonstrated accuracy:
- "a": ~0 .002 mm
- "b": better than 0.001 mm
- "c": better than 0.001 mm
- "d": 0.003 mm in vertical plane and 0.006mm in horizontal. The use of Hall probe with lower noise can significantly reduce the later numbers.

SENIS F3A Hall Probe Performance verification: measurement of Bx,y zero_drift

Appendix: CHESS-U CFM prototype alignment

Vertical field versus horizontal position xc variation for 50 sequential measurements

DQ prototype, I mag = 294A

Expected uncertain in "x" axis localization due to Hall Probe "zero" drift is By_zero_drift / $(dBy/dx) = 0.007$ mm

Appendix: CHESS-U CFM prototype alignment

Horizontal field versus vertical position "yc" variation for 50 sequential measurements

Expected precision of "y" axis localization due to Hall Probe "zero" drift: $Bx_zero_drift / (dBx/dy) = 0.003$ mm

Appendix: CHESS-U CFM prototype perfomance

Hall Probe (SENIS F3A) measurements

3/20/2017 3rd PACMAN Workshop, CERN March 20-22 2017 16