
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Trapezoid optimizations and
performance studies

Guilherme Lima (Fermilab)

GeantV Weekly Meeting
March 28, 2017

2017/03/28G.Lima @ GeantV Weekly Meeting2

Trapezoid algorithms
● The trapezoid has 6 planar faces:
● two faces are perpendicular to z-axis at +/-fDz

→ trivial normals are (0,0,+/-1) like for the box)
● four side planes (non-trivial normals)
● Distances are calculated based on 2 dot

products perf face, between face normals and
positions or directions

● In order to save dot product calculations, add
inside/outside checks and try to return early

● Two trap configurations: PLANESHELL=ON/OFF

2017/03/28G.Lima @ GeantV Weekly Meeting3

Box algorithms are very simple
● Guilherme Amadio has improved box algorithms

into just a few lines, thanks to trivial box normals

2017/03/28G.Lima @ GeantV Weekly Meeting4

Box algorithms are very simple

Can we simplify trapezoid algorithms, inspired on the box ones?

2017/03/28G.Lima @ GeantV Weekly Meeting5

Simpler trapezoid algorithms?
● Think of extensions from box algorithms

Still to be
dropped?!

This is much
simpler than before!

See next
page…

2017/03/28G.Lima @ GeantV Weekly Meeting6

Simpler trapezoid algorithms?

Block was
replaced
with 1 line

Considering EvaluateTrack<>()
function to replace a whole loop

2017/03/28G.Lima @ GeantV Weekly Meeting7

Performance comparisons
● Busy plots…

Vectorized
Unspecialized
Specialized
Root
Geant4
USolids

PLANESHELL

 =ON =OFF

Five commits are compared:

* 68c48276 – tag v0.3.rc

* 4e5928c1 – tag v00.03.00

* 019d29a0 – DistToIn() and DistToOut()
 improvements (merge request #384)

* b356bad1 – improvs to NormalKernel()
 (merge request #415)

* 2c007289 – Improvs to Contains(),
 Inside() and SafetyToOut()

Measurements taken on my MacBook Pro,
with most programs disabled.

Speedups defined w.r.to Specialized algorithm, e.g. speedup = Vect.time / Spec.time

Each data point define as an average of slowest 20 / 21 data points (largest
measurement is discarded in averaging). Error bars represent standard deviations.

2017/03/28G.Lima @ GeantV Weekly Meeting8

Performance comparisons: CPU times

Vectorized
Unspecialized
Specialized
Root
Geant4
USolids

PLANESHELL

 =ON =OFF

36% 39%

27% 30%27%

33%

46%

30%

12%

26% 26%

2017/03/28G.Lima @ GeantV Weekly Meeting9

Performance comparisons: speedups

Vectorized
Unspecialized
Specialized
Root
Geant4
USolids

PLANESHELL

 =ON =OFF

Note that improvements to scalar algorithm brought speedups down to ~4x (expected for AVX)

2017/03/28G.Lima @ GeantV Weekly Meeting10

Performance improvement summary

● Significant performance improvements
achieved by simplifying trapezoid
algorithms as expanded box algorithms

● Vectorized speedups significantly above
expected value (e.g. 4 for AVX) probably
mean that scalar algorithms have room
for optimization

● Some improvements come from careful
use of early returns (see next section!)

2017/03/28G.Lima @ GeantV Weekly Meeting11

Performance effects of early returns

● VecCore::EarlyReturnAllowed() is defined as
 always true for CPUs vs. always false for GPUs

● My previous experience (poorly documented) was that
such definition introduces opposing effects on scalar
and vectorized algorithms.

● To document this effect, a new templated earlyReturn
function is defined (e.g. for T=Real_v):

2017/03/28G.Lima @ GeantV Weekly Meeting12

Performance effects of early returns
● Look at trapezoid’s GenKernelForContainsAndInside():

→ Look at how performance varies with EARLYRETURNTHR value

2017/03/28G.Lima @ GeantV Weekly Meeting13

Performance comparisons: CPU times

Vectorized
Unspecialized
Specialized
Root
Geant4
USolids

PLANESHELL=OFF

EARLYRETURNTHR

 = 1 = 2 = 4

EARLYRETURNTHR

 = 1 = 2 = 4

2017/03/28G.Lima @ GeantV Weekly Meeting14

Performance comparisons: speedups

Vectorized
Unspecialized
Specialized
Root
Geant4
USolids

PLANESHELL=OFF

EARLYRETURNTHR

 = 1 = 2 = 4

EARLYRETURNTHR

 = 1 = 2 = 4

2017/03/28G.Lima @ GeantV Weekly Meeting15

Suggestions about early returns
● The last two plots show significant overheads from just

checking for the conditions for early returns

● Hence the use of early returns should be avoided for very
simple functions, like Contains(), Inside() and
SafetyToIn,Out() in very simple shapes, as even small
overheads produce significant performance degradation.

● Early return checks should be used very sparingly in
vector mode, unless the checks are true for a significant
fractions of the function calls.

● For more complex functions like DistanceToIn,Out(), the
overheads can probably be considered small

● The overheads from early return checks in vectorized mode
can be minimized (if not completely eliminated) with a
smart definition of EarlyReturnAllowed() functions, e.g.
always true for scalars, always false for vectors (in CPUs)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

