# Precision Jet Production for the LHC

#### James Currie (IPPP, Durham) CERN Theory Colloquium, 5<sup>th</sup> April 2017



European Research Council

Established by the European Commission
Supporting top researchers

from anywhere in the world





#### Outline

- Jets
- Uses for jets
- Problems when calculating with jets
- Methods for successfully calculating with jets
- Results and future phenomenology

#### Jets

Jets are a rare QCD object common to theory and experiment



they are produced abundantly at the LHC



and can be measured very accurately



LHC is mainly a gluon collider but gluon PDF is not well known:

- LHC jets probe a wide range of x
- gluon PDF directly sensitive to jet data, especially at large x
- would like to consistently include jet data in PDF fits



Can use the single inclusive jet cross section to determine:

- $\alpha_s(M_Z)$  and running coupling from single experiment
- very satisfying test of QCD and the LHC



Eur.Phys.J. C72 (2012) 2041, hep-ph[1203.5416}

Can use the single inclusive jet cross section to determine:

- $\alpha_s(M_Z)$  and running coupling from single experiment
- very satisfying test of QCD and the LHC



• model independent test of (coloured) new physics



Becciolini, Gillioz, Nardecchia, Sannino, Spannowsky hep-ph [1403.7411]

# Calculating things

We would like to calculate the transition from colliding protons to outgoing jets:

$$\mathcal{P} \sim |\langle j_1 j_2 \cdots | p_1 p_2 \rangle|^2$$

but we can't calculate this so we simplify (factorize) the problem:



but we can't calculate any of these things either... so we simplify further



Using vanilla fixed order perturbation theory, can calculate *partonic* cross section:

$$d\sigma = \int \frac{d\xi_1}{\xi_1} \frac{d\xi_2}{\xi_2} f_a(\xi_1, \mu_F) f_b(\xi_2, \mu_F) d\hat{\sigma}_{ab}(\alpha_s(\mu_R), \mu_R, \mu_F) + \cdots$$
$$d\hat{\sigma}_{ab} = d\hat{\sigma}_{ab}^{LO} + d\hat{\sigma}_{ab}^{NLO} + d\hat{\sigma}_{ab}^{NNLO} + \cdots$$

Using vanilla fixed order perturbation theory, can calculate *partonic* cross section:

$$\mathrm{d}\sigma = \int \frac{\mathrm{d}\xi_1}{\xi_1} \frac{\mathrm{d}\xi_2}{\xi_2} f_a(\xi_1, \mu_F) f_b(\xi_2, \mu_F) \,\mathrm{d}\hat{\sigma}_{ab}(\alpha_s(\mu_R), \mu_R, \mu_F) + \cdots$$

$$\mathrm{d}\hat{\sigma}_{ab} = \mathrm{d}\hat{\sigma}_{ab}^{LO} + \mathrm{d}\hat{\sigma}_{ab}^{NLO} + \mathrm{d}\hat{\sigma}_{ab}^{NNLO} + \cdots$$

leading order:  $\mathcal{O}(\alpha_s^2)$ 



Using vanilla fixed order perturbation theory, can calculate *partonic* cross section:

$$\mathrm{d}\sigma = \int \frac{\mathrm{d}\xi_1}{\xi_1} \frac{\mathrm{d}\xi_2}{\xi_2} f_a(\xi_1, \mu_F) f_b(\xi_2, \mu_F) \,\mathrm{d}\hat{\sigma}_{ab}(\alpha_s(\mu_R), \mu_R, \mu_F) + \cdots$$

$$\mathrm{d}\hat{\sigma}_{ab} = \mathrm{d}\hat{\sigma}_{ab}^{LO} + \mathrm{d}\hat{\sigma}_{ab}^{NLO} + \mathrm{d}\hat{\sigma}_{ab}^{NNLO} + \cdots$$

Next-to-leading order:  $\mathcal{O}(\alpha_s^3)$ 



Using vanilla fixed order perturbation theory, we can calculate the *partonic* cross section:

$$\mathrm{d}\sigma = \int \frac{\mathrm{d}\xi_1}{\xi_1} \frac{\mathrm{d}\xi_2}{\xi_2} f_a(\xi_1, \mu_F) f_b(\xi_2, \mu_F) \,\mathrm{d}\hat{\sigma}_{ab}(\alpha_s(\mu_R), \mu_R, \mu_F) + \cdots$$

$$\mathrm{d}\hat{\sigma}_{ab} = \mathrm{d}\hat{\sigma}_{ab}^{LO} + \mathrm{d}\hat{\sigma}_{ab}^{NLO} + \mathrm{d}\hat{\sigma}_{ab}^{NNLO} + \cdots$$

Next-to-next-to-leading order:  $\mathcal{O}(\alpha_s^4)$ 





# Why Higher Orders?

- Theoretical uncertainty typically estimated by dependence on unphysical scales at a given fixed order
- higher orders should reduce this dependence systematically, but also contain physics not captured by scale variation
- NNLO contains all features of calculation
  - initial-state radiation
  - non-trivial jet algorithm
  - all partonic channels
  - non-trivial physical scales



Anastasiou, Dixon, Melnikov, Petriello '04

• NLO and NNLO corrections change the normalization and shape of observables



# New Physics



Anastasiou, Duhr, Dulat, Herzog, Mistlberger Czakon, Fiedler, Mitov

Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Ravlev, Tancredi

No B-SM discovered (yet)... but plenty of B-NLO

Higher orders include physics inaccessible to LO calculations

# IR Singularities

Of course life is not that simple:

 phase space integrals over massless states develop IR divergences in soft and collinear limit

for real radiation at N<sup>n</sup>LO  $(S+C)^n \sim S^n + S^{n-1}C + \dots + SC^{n-1} + C^n$ 

- n-loop amplitudes contain singularities in dimensional regularization parameter  $\epsilon = (4-d)/2$ 

$$\mathcal{M}^n \sim \sum_{m=-2n}^{\infty} c_m \ \epsilon^m$$

- physical (finite) answer obtained by summing over degenerate intermediate states at the same order in perturbation theory
- need to express singularities in the *same language*

# IR Singularities

In unresolved limits the matrix elements factorize:

$$\mathcal{M}_{n+1}(\cdots, p_i, p_j, p_k, \cdots) \stackrel{j \text{ unresolved}}{\longrightarrow} U(p_i, p_j, p_k) \mathcal{M}_n(\cdots, p_i, p_k, \cdots)$$

$$\underset{function}{\text{universal}} n \text{ partons}$$

e.g. in single collinear limit:

 $\mathcal{M}_{n+1}(\cdots, p_i, p_j, p_k, \cdots) \xrightarrow{i||j} P_{ij \to (ij)}(z) \mathcal{M}_n(\cdots, p_{(ij)}, p_k, \cdots)$ 

Loop amplitude singularities also factorize, e.g.

 $\mathcal{M}_n^1(p_1 \cdots, p_n) = \boldsymbol{I}(p_1 \cdots, p_n) \ \mathcal{M}_n^0(p_1 \cdots, p_n) + \mathcal{O}(\epsilon^0)$   $\begin{array}{c} \text{universal} \\ \text{singular function} \end{array} \text{ tree-level}$ 

factorization and universality are central to all methods for higher order calculations

## Methods at NLO

Main problem at NLO is extracting singularities... many ways to do this:

- Dipole subtraction [Catani, Seymour '96]
- FKS subtraction [Frixione, Kunszt, Signer '95]
- Sector decomposition [Hepp '67; Binoth, Heinrich '00]
- Phase space slicing [Giele, Glover '91]

## Methods at NNLO

Main problem at NNLO is disentangling singularities

Most methods basically a generalization of NLO:

- Antenna subtraction [Kosower '03; Gehrmann, Gehrmann-De Ridder, Glover '05]
- CoLorFul subtraction [Del Duca, Somogyi, Trocsanyi '06] (dipoles)
- Projection to Born [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]
- Sector-improved residue subtraction [Czakon '10] (FKS+sectors)
- qT and N-Jettiness subtraction [Catani, Grazzini '07; Gaunt, Stahlhofen, Tackmann, Walsh '15; Boughezal, Focke, Liu, Petriello '15] (slicing)

(not an exhaustive list)

Subtraction at NLO  
$$d\sigma_{ab,NLO} = \int_{\Phi_{m+1}} d\sigma_{ab}^R + \int_{\Phi_m} d\sigma_{ab}^V + d\sigma_{ab}^{MF}$$

Reorganize cross section by adding zero

$$d\sigma_{ab,NLO} = \int_{\Phi_{m+1}} \left[ d\sigma_{ab}^R - d\sigma_{ab}^S \right] + \int_{\Phi_m} \left[ d\sigma_{ab}^V - d\sigma_{ab}^T \right]$$

$$\mathrm{d}\sigma_{ab}^{T} = -\int_{1}\mathrm{d}\sigma_{ab}^{S} - \mathrm{d}\sigma_{ab}^{MF}$$

#### Subtraction at NNLO

At NNLO more terms to regulate

$$d\sigma_{ab,NNLO} = \int_{\Phi_{m+2}} \left[ d\sigma_{ab}^{RR} - d\sigma_{ab}^{S} \right] + \int_{\Phi_{m+1}} \left[ d\sigma_{ab}^{RV} - d\sigma_{ab}^{T} \right] + \int_{\Phi_{m}} \left[ d\sigma_{ab}^{VV} - d\sigma_{ab}^{U} \right]$$

$$\mathrm{d}\sigma_{ab}^{T} = \mathrm{d}\sigma_{ab}^{V,S} - \int_{1} \mathrm{d}\sigma_{ab}^{S} - \mathrm{d}\sigma_{ab}^{MF,1}$$

$$\mathrm{d}\sigma_{ab}^{U} = -\int_{1}^{1}\mathrm{d}\sigma_{ab}^{V,S} - \int_{2}^{1}\mathrm{d}\sigma_{ab}^{S} - \mathrm{d}\sigma_{ab}^{MF,2}$$



#### Antenna Subtraction

#### Basic idea:



construct a counterterm that mimics the matrix element in all singular regions of phase space

#### Antennae

Antenna functions built from matrix elements:



Antenna mimics all singularities of QCD



Phase space map smoothly interpolates momenta for reduced matrix element between limits

$$(\widetilde{123}) = xp_1 + r_1p_2 + r_2p_3 + zp_4$$
  
$$(\widetilde{234}) = (1-x)p_1 + (1-r_1)p_2 + (1-r_2)p_3 + (1-z)p_4$$

# Integrating the Antennae

- Relate phase space integrals to multiloop integrals via optical theorem
- apply well developed techniques IBP, LI to masters



- all antennae in all crossings now successfully integrated:
  - Final-Final [Gehrman, Gehrmann-De Ridder, Glover '04, '05]
  - Initial-Final [Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni '10]
  - Initial-Initial [Gehrmann, Monni '11; Boughezal, Gehrmann-De Ridder, Ritzmann '11; Gehrmann, Ritzmann '12]

#### Double Real

Subtraction term constructed to remove:

• single unresolved

• colour connected double unresolved



n+3

n+2

• over-subtraction in single and double unresolved limits







14.IF-FF double collinear qi I g - g I g



#### Real Virtual

1. Analytic pole cancellation against 1-loop matrix element

 $2\operatorname{Re}\langle \mathcal{M}_{n+3}^{0}|\mathcal{M}_{n+3}^{1}\rangle + \boldsymbol{J}_{n+3}^{(1)}(1,\cdots,n+3;\epsilon)\langle \mathcal{M}_{n+3}^{0}|\mathcal{M}_{n+3}^{0}\rangle = \mathcal{O}(\epsilon^{0})$ 

2. Only single unresolved limits



Single unresolved of (1) and poles of (2) also subtracted







#### Double Virtual

#### Analytic pole cancellation against 2-loop and (1-loop)<sup>2</sup> matrix element

James@Jamess-MacBook-Pro-4:~/hepforge/maple/process/jet\$ form autoA4g2XU.frm Run: Wed Nov 16 15:02:57 2016 FORM 4.1 (Mar 13 2014) 64-bits #poles = 0;17.51 sec out of 17.53 sec James@Jamess-MacBook-Pro-4:~/hepforge/maple/process/jet\$ form autoA4g2YU.frm Run: Wed Nov 16 15:03:24 2016 FORM 4.1 (Mar 13 2014) 64-bits #poles = 0;6.55 sec out of 6.55 sec James@Jamess-MacBook-Pro-4:~/hepforge/maple/process/jet\$ form autoAh4q2XU.frm FORM 4.1 (Mar 13 2014) 64-bits Run: Wed Nov 16 15:03:36 2016 #poles = 0; 8.48 sec out of 8.48 sec James@Jamess-MacBook-Pro-4:~/hepforge/maple/process/jet\$ form autoAh4g2YU.frm FORM 4.1 (Mar 13 2014) 64-bits Run: Wed Nov 16 15:03:49 2016 #poles = 0;4.90 sec out of 4.91 sec James@Jamess-MacBook-Pro-4:~/hepforge/maple/process/jet\$ form autoggB2g2U1.frm FORM 4.1 (Mar 13 2014) 64-bits Run: Wed Nov 16 15:04:14 2016 #poles = 0;17.61 sec out of 17.64 sec James@Jamess-MacBook-Pro-4:~/hepforge/maple/process/jet\$ form autoggB2g2XU.frm FORM 4.1 (Mar 13 2014) 64-bits Run: Wed Nov 16 15:04:43 2016 #-

# Single jet inclusive cross section

The basic QCD scattering process at the LHC

Experimentally:

- bin all jets inclusively within fiducial cuts
- many entries from the same event

Theoretically:

- sample the relevant phase space (parton momenta)
- cluster partons into jets using the jet algorithm
- each jet enters the distribution as a *weighted event*
- weights depend on PDFs,  $lpha_s$  and thus the theoretical scales  $\mu_F,\ \mu_R$





## Canonical scale choices

- no fixed hard scale for jet production
- two widely used theoretical scale choices:
  - leading jet  $p_{T1}$  for all jets in an event
  - individual jet p<sub>T</sub>
- smaller scale changes PDFs and  $\, lpha_s \,$
- no difference for back-to-back jet configurations (only arises at higher orders)



At NLO,  $p_T != p_{T1}$  for:

- 3-jet rate (small rate)
- 2-jet rate (3rd parton falls outside jet, fails cuts)

Changing *R* has an effect on the cross section, but also on the scale choice:

- p<sub>T1</sub> scale has no *R*-dependence at NLO, unlike p<sub>T</sub>
- at NNLO even p<sub>T1</sub> scale choice has *R*-dependence in some four-parton configurations



## Setup

Theory setup:

- NNPDF3.0\_NNLO
- anti- $k_T$  jet algorithm
- scale choices  $\mu_R = \mu_F = \{p_{T_1}, p_T\}$
- vary up and down by factors of 2

Comparison to data:



- ATLAS 7 TeV 4.5 fb<sup>-1,</sup>  $p_T > 100$  GeV, |y| < 3.0, R=0.4, 0.6
- CMS 7 TeV 5.0 fb<sup>-1,</sup>  $p_T > 56$  GeV, |y| < 3.0, R=0.5, 0.7

ATLAS, 7 TeV, anti-k<sub>t</sub> jets, R=0.4







#### Scale variation

Writing out all the renormalization scale dependent terms and varying about a starting scale  $\mu_0$ , where  $L_R = \log(\mu_R/\mu_0)$ 

$$\begin{aligned} \sigma(\mu, \alpha_s(\mu^2), \mu_0) &= \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^n \sigma_0 & \text{negative for } \mu_R < p_T, p_{T_1} \\ &+ \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^{n+1} \left[\sigma_1 + n\beta_0 L_R \sigma_0\right] \\ \text{running coupling} &+ \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^{n+2} \left[\sigma_2 + (n+1)\beta_0 L_R \sigma_1 + n\beta_1 L_R \sigma_0 + \frac{1}{2}n(n+1)\beta_0^2 L_R^2 \sigma_0\right] \\ &+ \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^{n+3} \left[\cdots\right] \end{aligned}$$

- scale variation given by varying up and down by a factor of 2
- variation due to central scale choice a parametric uncertainty

#### Scale variation pT1





#### Scale variation p<sub>T</sub>











NLO Ratio to data

p<sub>T</sub> (GeV)



NNLO Ratio to data

p<sub>T</sub> (GeV)



ATLAS, 7 TeV, anti- $k_t$  jets, R=0.4, NNPDF3.0, TOT,  $|y_j| < 0.5$ 

#### R=0.4 ATLAS



#### R=0.6 ATLAS













ATLAS, 7 TeV, anti- $k_t$  jets, R=0.6, NNPDF3.0, TOT,  $|y_j| < 0.5$ 







CMS, 7 TeV, anti- $k_t$  jets, R=0.7, MMHT2014, TOT,  $|y_j| < 0.5$ 



# Future phenomenology

Jet phenomenology at NNLO really just starting, many more processes to consider:

- more exclusive searches like dijet mass distribution
- ratios of cross sections, good for systematics: centre of mass energy, R-values etc
- PDF fits: will be interesting to see the impact of jet K-factors on NNLO PDFs and test consistency with top data
- interface to AppleGrid for detailed phenomenology with strong coupling and PDFs
- any suggestions welcome!

# Summary

Jets are a key ingredient for testing QCD at the LHC

- provide a bridge between perturbative theory and precision experiment
- sensitive to important SM parameters and a powerful probe of BSM physics

Calculating higher order corrections to jet production:

- is necessary to capture all key features of the process
- allows us to asses the theoretical error in our calculation
- complicated by intricate IR singularity structure

Nevertheless this has recently been achieved at NNLO:

• first results are out, opening the gateway to NNLO jet phenomenology