2d FCC-ee Energy Calibration and Polarization WG meeting

Requirements on Optics and Power for the Polarimeter

Nickolai Muchnoi

Budker INP. Novosibirsk

13 Ian 2017

The experiment (horizontal plane)

☎

✆

✝

\overline{C} ✝ Beam optics: vertical dimension

Head-on beam collision with a laser radiation will produce scattered electrons with angles up to $\theta_{max} = 2\omega_0/m$, where ω_0 is the laser photon energy and m is the electron rest energy.

☎ ✆

- As we see this angle does not depend on the initial electron energy. Considering $\omega_0 = 2.33$ eV we obtain $\theta_{max} \simeq 10 \ \mu$ rad.
- **Electrons with** θ_{max} scattering angle are most sensitive to the beam polarisation. The vertical size of the scattered electrons distribution will be $S_y = 2 \cdot \theta_{max} \cdot L$, where L is the distance between the laser interaction point and the detector (FIG. 1).

If $L = 30$ m this size will be as small as $\simeq 0.6$ mm.

- \bullet Detector for scattered electrons should have a vertical pixel size $\lesssim 10$ μ m.
- FCC beam divergence will add some smearing $\theta_y \simeq \sqrt{\varepsilon_y/\beta_y}$.
- \circ With $\varepsilon_y = 1$ pm and $\beta_y = 100$ m this smearing is as small as 0.1 μ rad, very good!

\overline{C} ✝ Beam optics: horizontal dimension

- In order to place a detector for scattered electrons, we need them to be separated from the main beam.
- This is done by the bending magnet and free space (FIG. 1). The separation is expressed as $\Delta X = \kappa \cdot \theta_0 \cdot L_{arm}$, where κ is the scattering parameter, θ_0 is the main beam bending angle, L_{arm} is the distance to the detector.

☎ ✆

- Scattering parameter $(\kappa=4\omega_0E_{beam}/m^2)$ is linearly scaled with either ω_0 or E_{beam} . For $\omega_0 = 1$ eV and $E_{beam} = 100$ GeV one has $\kappa \simeq 1.53$.
- For this value of κ and $\theta_0 = 1$ mrad and $L_{arm} = 20$ m we obtain $\Delta X \simeq 30$ mm. This seems to be too close to the beam axis, so we need to increase either κ or/and θ_0 or/and L_{arm} .
- **1st question: implementation of the spectrometer section to FCC lattice.** A $bend + long$ free space without any fields, is this possible?
- 2 and question: how close to the beam axis could we place the detector for scattered electrons?

\overline{C} ✝ Laser power requirements

Consider a Q-switched solid state laser operating at 1 kHz repetition rate and a pulse energy of $0.1 - 1$ mJ.

☎ ✆

- Today this is not a problem to have such parameters for either IR, green or UV radiation.
- We can have 10–100 scattered electrons per one laser shot.
- From simulations we know that we need about 10^7 scattered electrons to measure beam polarization with 1% accuracy.
- So one measurement will take 100–1000 seconds.

\overline{C} ✝ Conclusion

In order to understand the relevance of the approach for the FCC-ee needs I think we need:

- Introduce the spectrometer/polarimeter section(s) to existing FCC lattice.
- Consider an appropriate detector options.
- Perform a detailed simulation study:
	- o Laser-electron LP.

☎

- Tracking of scattered electrons/photons.
- Detection of scattered electrons/photons.
- Analysis of the distributions.
- I would like to reiterate that the Compton polarimeter/energy spectrometer with scattered electrons is still not used.
- I think it is very important to check this method on existing installations.