Simulations for FCC-ee beam self-polarization

Content:

- Solenoid effect in SLIM

VYDIO January 2017

Solenoids in SLIM

- Problem introducing more solenoids encompassed by defining all them at the beginning of the file....
- Solenoids + anti-solenoids on the lhs/rhs of both IPs each with $B_{sol}=2$ T (independent upon energy) and x'=-0.015 rad, x=0 at the IP

Closed orbit at 45 GeV

45 GeV:

 x_{rms} =14.9 μ m

 y_{rms} =0.9 μ m

 $P_{lin}=88\%$

2/7

Solenoids in SITROS

SITROS does not allow tilted solenoids. We can create an anti-symmetric beam bump across the IP. Due to SLIM results it is not a priority.

3/7

Effects of vertical emittance correction on polarization

Horizontal equilibrium emittance

$$\epsilon_x = C_q \gamma^2 rac{\mathcal{I}_5}{J_x I_2} \quad \mathcal{I}_5 \equiv \oint ds \, rac{eta_x D_x'^2 + 2 lpha_x D_x D_x' + \gamma_x D_x^2}{|
ho|^3}$$

In a "flat" designed machine, vertical emittance originates from

- cone of photon emission which sets the lower limit for ϵ_y : very small, especially for large rings
- magnet misalignments
 - vertical displacement of quadrupoles
 - $-\,$ roll of horizontal bending magnets
 - roll of quadrupoles regions
 - vertical misalignment of sextupoles

A number of corrections have been considered by S. Aumon and S. Sinyatkin (see eeFact2016). Sandra used the Oide-san optics I am using for polarization simulations, but with tapering for dealing with the horizontal orbit in presence of synchrotron radiation. She considered following corrections

- Orbit/Dispersion correction
- Use of 1 skew quad every 6 FODO cells where $D_x \neq 0$ for correcting the linear coupling resonance driving terms

The parameters she considered are

- δ^Q_{rms} =20-30 μ m
- δ^Q_{rms} =50 μ rad

5/7

As I do not have Sandra files, I am trying of reproducing her corrections to assess impact on polarization.

To-do-list

- Add skew quadrupoles
- Introduce tapering
- Implement "dispersion free steering"
- Implement coupling correction

In addition: couple BPMs offsets to the close-by quadrupole.

Adding skew quads

Skew quads added as multipoles (ℓ =0) into MADX model each 7th FODO cells (as Sandra) next to either a QD3 or a QDG1. Total of 147 skew quads added^a Betatron coupling

I follow the treatment developed for Tevatron and that I used in ATF DR simulations (Dynamic Aperture Workshop, Bloomington 2010, unpublished) which I believe is what also Sandra is using. The codes used for ATF DR must be yet adapted to FCC.

- The value of the complex coupling functions w_{\pm} due to random quadrupole roll errors may be measured at BPMs with Turn-by-Turn capabilities.
- The spurious vertical dispersion is measured at the BPMs.
- The effect of each skew quadrupole on w_{\pm} and vertical dispersion is calibrated by using MADX: 147×1586 ptc-tracking files + 147×1586 dispersion matrix elements.
- The strenghts of the skew quadrupoles needed for correcting the "measured" w_{\pm} and D_y are computed by a SVD.

^aSandra has 272