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Oxford k-contract  1/4/14 – 31/3/17

WP1: BDS + MDI design optimisation and integration

27 +  18 staff months +    £5k + £10k

WP2: BDS beam feedback and control

16.5 + 13.5 staff months +  £11k + £60k

WP3: Drive beam phase feed-forward system

26 +  18 staff months +  £15k + £80k

WP4: Drive beam BPM feasibility study

4.5 +  4.5 staff months +  £19k + £12k

Total: 74 + 54 staff months +  £50k + £162k

Key: UK + CERN (£612k)



Outline

WP3: Drive beam phase feed-forward system

WP2: BDS beam feedback and control

WP4: Drive beam BPM feasibility study

WP1: BDS + MDI design optimisation and integration



WP3: drive-beam phase feedforward system

• Develop feedback boards and amplifiers for 

CTF3 phase feed-forward prototype system

• Commission CTF3 prototype feed-forward 

system with beam

• With beam experience, optimize component 

design and test modified components 

• Apply experience gained from CTF3 prototype to 

CLIC drive beam design, including performance 

simulations



Normal PFF Correction Mode
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UPSTREAM PHASE
1.2µs, 3GHz beam pulse

4A beam current.

DOWNSTREAM PHASE
1.1µs, 3GHz beam pulse.

3.5A beam current.

COMBINER RING
0.5 turns.

Magnetic injection.



FONT5a Board
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• Digitises phase monitor signals, calculates and outputs 
voltage to drive amplifiers.

• Custom built digital board:
– 9 x 14-bit ADCs clocked at 357 MHz.
– 4 x 14-bit DACs
– Xilinx Virtex-5 FPGA.

• Also used by Oxford/JAI FONT group for IP feedback 
+ ground-motion FF tests at ATF2.



Amplifiers
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• Control module: Takes inputs, distributes signals to drive modules.
• Drive module: Ixys DE150-201N09A Si FETs driving Wolfspeed C2M0160120D SiC FETs.
• 20 kW power. Max output of around 700 V for 2 V input.
• 47 MHz bandwidth for small signal variations (up to 20% max output).
• Returning signals terminated at amplifier, with monitoring.



Correction Range
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Phase FF results (December 2016)

CLIC goal met: 0.2 degrees stability

and factor ~6 correction:

Jack Roberts’ PhD thesis

(contributions also from

Davide Gamba’s PhD)

Piotr Skowronski

CTF3 crew



Comments on amplifier (Colin Perry)

For CTF3: SiC

- Silicon carbide FETs for CTF3 to get high power from a module

- high voltage devices (1kV, vs 100V LDMOS)

- eased the impedance transformation requirement

- penalty was limited high frequency output power, high power only at lower frequencies

- in practice, the unsuitable packaging available gave various not unexpected problems

- they remain attractive if power requirement are higher at low frequencies

- I did not demonstrate that they could meet full bandwidth requirement as originally stated

- I believe they can (just), but that is unproven

- remain possibly attractive for CLIC, but require bare die to be used not packaged parts

The future: GaN?

- gallium nitride relatively new (commercial for ~5 years) and rapidly improving technology

- unfortunately they are low voltage (presently: 200V max)

- harder to get high power from one module (needing more step-up of impedance)

- also unfortunate is their small die size, giving poor pulse power handling

- albeit preferable for all normal use...

- they are high frequency devices which is good for making fast amplifiers

- and not good, aggravating the usual stability problem use in linear amplifiers

- being commercially developed entirely (?) for power conversion (switching) use

- I feel they would prove the best choice on a 5 to 10 year timescale, but can't prove this



Future directions for amplifier?

Better characterization of requirements

- planned for wideband correction of phase noise from klystrons

- but in CTF3 dominant corrections are at much lower frequency as well as larger in magnitude

Safely combining modules needs to be demonstrated

- theoretically, a large number of modules can be combined to get the high peak powers needed

- but this has to be done without any risk of propagating failures

- and the system has to be able to work with failed modules

- it may not be convincing that this can be achieved without a practical demonstration

Evaluation of amplifier technologies

- a considerable choice in amplifier technologies, in broad terms and at more detailed level

- unless power requirements come down considerably (!) cost effective performance is vital

- to do this all realistic alternatives have to be pursued to the point that comparisons are possible

Possible Work – more relevant for CLIC ‘engineering phase’?

- reached the stage that 'real engineering' is essential for real progress

- significant group working on it - perhaps 5 or 6 people?

- this would have the resources to effectively test, prototype, and iterate designs

Feasible demonstrations on shorter timescale

- a demonstration GaN amplifier power module

- but *not* a full amplifier, complete with its control and signal processing

- the associated output transformer as a practical and producible configuration

- would need to lead to a solution sufficiently developed by 2018 to be costable



Reminder of CLIC requirements

- 4 kickers at each bend

- 16 amplifiers & kickers / drive beam

- 250kW peak power / amplifier

- 256 modules in each amplifier

- 768 amplifiers total, 200MW total 

peak power

- amplifier cost: £75K per 250kW 

amplifier 

- SYSTEM COST: £60M (+/-£30M) !!!
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WP2: BDS beam feedback and control

• Optimisation of the performance of ATF2 feedback systems as part of

the ATF2 collaboration goals of 37nm beam size and nm-level beam

stabilisation

• Where relevant, bench testing of prototypes: drive amplifiers, signal

processors, feedback boards

• Beam tests of prototype systems at ATF2 and CTF3 – subject to beam

availability

• With WP1: simulation of the integrated performance of feedback (and

feed-forward) systems in the global CLIC design

• Optimised design of CLIC IP (and interface with related BDS) beam

steering feedback systems for luminosity stabilisation and

optimisation

• Integration of component designs within Machine Detector Interface

(MDI) design
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ATF2/KEK

2020



FONT5 ‘intra-train’ feedbacks

ATF2 extraction line

2121
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FONT5 ‘intra-train’ feedbacks



Single-loop feedback

P3 used to drive K2 in single-loop mode

Used to demonstrate ILC IP feedback

ATF2:

• 3-bunch train

• Bunch interval up to 154ns

• Measure bunch-1 vertical position

• Correct bunch-2 and bunch-3 positions



Upstream FONT5 System

Analogue Front-end

BPM processor

FPGA-based digital 

processor Kicker drive amplifier

Stripline BPM with 

mover system

Strip-line kicker

Beam



Stripline BPMs
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154ns 154ns

Excellent temporal resolution



BPM system resolution
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Resolution = 291 +- 10 nm (Q ~ 0.9 nC)



BPM spatial resolution: update Dec 2016

Two technical improvements 

to BPM signal processor:

• 6 dB attenuator before sum 

mixer used for high-charge 

operation

• No-PLL firmware used to 

remove FONT5A board 

sample timing jitter relative 

to the beam

Resolution = 157 +- 8 nm (Q ~ 1.3nC)



Latency: <154 ns

 meets ILC requirements

FB system latency

Kick to 

bunch 2



Max. kick  =     75 um (1.3 GeV) 

=   400 nm (ILC 250 GeV beam) 

=     66 σy (ILC 250)

 meets ILC requirement of 50 σy

FB system dynamic range

Kick to 

bunch 2



Incoming beam trajectory scan

vertical

beam 

position 



Operational jitter correction

Normal

operations:

2um jitter

 500nm



Random jitter source

Random jitter introduced pulse-to-pulse using ZVFB1X 

& ZVFB2X

ECFA LC2016 32

from Y. Kano



Enhanced-jitter correction

Normal

operations:

2um jitter

 500nm

Deliberately

enhanced

jitter:

14um jitter

 500nm



Results agree with expected performance (in green)

Enhanced-jitter correction



Coupled-loop feedback

P2 & P3 used to drive K1 & K2

Beam position and angle stabilisation
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Witness BPM
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FONT5 system performance

Bunch 1:

input to FB

FB off

FB on

Bunch 2:

corrected

FB off

FB on
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Time     

sequence

Bunch 2:

corrected

FB off

FB on
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Jitter reduction

Factor ~ 3.5 improvement



4040

Feedback loop     witness     
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Feedback loop     predict 



4242

Witness BPM:     measure   predict
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Model-predicted jitter reduction at IP

FB off

FB on

y

y’
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Predicted jitter reduction at IP

Predict position stabilised 

at few nanometre level…

How to measure it?!
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Measured beam-size reduction at IP
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Measured beam-size reduction at IP
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Cavity BPM system near IP
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IP cavity BPM system
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Cavity BPM signal processing

I    I’

Q   Q’

bunch

charge

Honda
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IP BPM resolution

Resolution has been studied by 3 Oxford PhD students for 

several years …

Best resolution measured honestly (geometric method)

is 57nm (single sample) and  46nm (9-sample integration)

Smallest jitter ever measured at one BPM is 

49nm (integration)

Using a multi-parameter fit (up to 13 parameters!)

best resolution is 31 nm (single sample) and

27nm (integration)

3.5 times worse than obtained by Honda in 2008!
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Low-Q cavity BPMs

Design parameters

Measured was 10 ns (A, B), 6ns (C)

(BPMs remade twice, and C since been In-sealed twice)



Cavity BPM IP feedback

IPB used to drive IPK in single-loop mode

Working towards nanometre level stability



Stabilising from 

440 nm to ~70 nm

Best IP feedback results



2-BPM IP feedback

Use input from IPA and IPC 

to stabilise beam at IPB

First look in October 2016: nice initial results, more work 

needed:



Proposal for ongoing work

• CLIC review highlighted small, stable beams as issue for 

achieving CLIC luminosity

• The beam-size dependence on bunch charge is not yet 

fully understood – Pierre Korysko PhD  ATF2 goal 1

• ATF2 goal 2 is to stabilise beam at ‘nanometer level’ – far 

from demonstrating this: much harder than at CLIC

• Functionally both the upstream and IP FB systems are 

capable of doing this, the problem is getting nm resolution 

in the cavity BPMs

• Needs a redesign and/or refabrication of the IP cavity 

BPMs (and possibly also the electronics)

• PhD students: Talitha Bromwich, Rebecca Ramjiawan

• 2-years of postdoc effort, supported by Colin Perry 



CLIC IP FB system (CDR)
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Engineering comments (Colin Perry)

- radiation : this is the biggest problem

- magnetic field: restrictive, in that ferrite cored inductors and 

transformers have to be avoided

- size : very limited space is available, but this is not a real 

difficulty

- reliability : critical

- inaccessibility : only exchange of a single IP electronics unit 

is practical, & without manual connections

- configurability: operation needs to be reconfigurable as far 

as possible without access to the IP unit



Engineering proposal (Colin Perry)

A demo system could be built today – ambitious for 2019!

- would meet size, magnetic field, and radiation requirements

- assumes we do not need normalization for bunch charge

- includes controllable non-linearity

- little or no digital internally except for simple switches

Limited demonstrations?

- BPM 1.5GHz front end avoiding use of ferrite components

- GaN amplifier output stage of appropriate capabilities 

(driving a dummy kicker)

- could be demonstrated at CLEAR, given suitable BPM + 

kicker



WP1: BDS + MDI design optimisation and integration

Ryan Bodenstein will report the scientific progress 

in a short talk to follow



• Set up CLIC integrated beam tracking simulation 

on Oxford Grid cluster

• Extend and augment tracking code by 

implementing FB and stabilisation systems 

based on measured performance of prototypes 

at ATF2 and elsewhere

• Develop and implement CLIC tuning tools for 

ATF2 and compare techniques

• Strong emphasis on static two-beam tuning

• Evaluate CLIC luminosity performance under 

realistic machine condition scenarios  

WP1: BDS + MDI design optimisation and integration
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Proposal for ongoing work

• Ryan is now fully up to speed and integrated in the CLIC 

beam tuning team

• At ATF2 (with Fabian) in December + January

• Continue to develop single- and two-beam tuning 

techniques for CLIC

• Apply + develop tuning techniques at ATF2

• Contribute to luminosity tuning/optimisation studies for 

the energy-staged CLIC Project Plan 

• New doctoral students: 

Chetan Gohil – stray magnetic field effects

Pierre Korysko – wakefield effects on beam size

• 2-years postdoc effort, also to support PhD students



WP4: description of work

• Study of low cost BPM pickup alternatives

• Study of the PETS RF power EMI at the pickup 

location

• Theoretical (EM simulations) and practical (CLEX 

beam)

• Compare different BPM types, including costs 

and performance

• Stripline, button, coaxial and other “exotic” 

designs

• Evaluate read-out electronics for a 

cost/performance optimized DB BPM pickup



Proposed programme summary

• ATF2: small-beam + nm-stabilization 

Burrows, Christian, Perry, vice Blaskovic, 

Bromwich, Ramjiawan, Korysko

• CLIC beam tuning + luminosity optimisation

Bodenstein, Korysko, Gohil

• CLIC phase feed-forward amplifier module?

CLEAR: demo of CLIC IPFB components?

Stripline BPM applications for CLIC?

Perry, Christian, Burrows

• (Xbox-3 + RF studies: Paszkiewicz)



Proposed resources (1/4/17-31/3/19)

• Staff effort (months): Oxford CERN

Burrows, Christian 44 0

Blaskovic, Roberts 3 1

Bodenstein, vice Blaskovic 0 48

Perry 15 9

Total 62 57

• PhD students (months):

Bromwich, Ramjiawan 36 0

Gohil, Korysko, Paszkiewicz 72

• Equipment, consumables, travel (k£): 50 100



Backup slides
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Kicker BPM 

1

Analogue BPM 

processor

BPM 

2

BPM 

3
e-

CLIC prototype: FONT3 at KEK/ATF

Electronics latency ~ 13ns

Drive power             > 50nm 

@ CLIC
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ATF2 design parameters



FONT5 digital FB board

Xilinx Virtex5 FPGA

9 ADC input channels 

(TI ADS5474)

4 DAC output channels 

(AD9744)

Clocked at up to 400 MHz 

(phase-locked to beam)
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• FONT4 amplifier, outline design done in JAI/Oxford

• Production design + fabrication by TMD Technologies

• Specifications:

+- 15A (kicker terminated with 50 Ohm)

+- 30A (kicker shorted at far end)

35ns risetime (to 90%)

pulse length 10 us    

repetition rate 10 Hz  

FONT4 drive amplifier 



BPM readout
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BPM signal processing
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BPM signal processor

7777
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ILC IR: SiD for illustration

Door

SiD

Cavern wall 
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ILC IR: SiD for illustration

Door

SiD

Cavern wall 
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Final Doublet Region (SiD)
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Final Doublet Region (SiD)
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IP kicker detail (SiD)
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Final Doublet Region (SiD)



IP FB BPM detail (SiD)

Tom Markiewicz, Marco Oriunno, Steve Smith

e- beam in

e+ beam out
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ILC IP FB performance (TDR)


