

Tier-0 status and plans

___ LHCb-

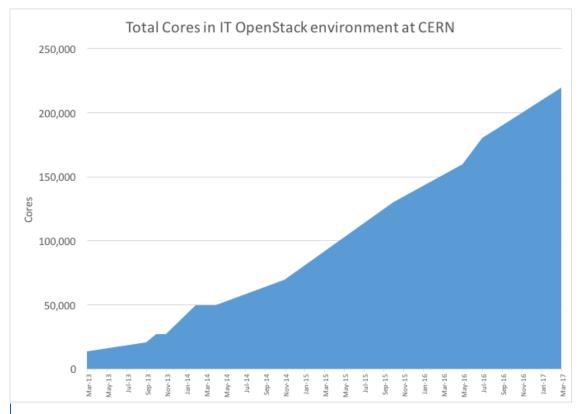
CERN Prévessin

ATLAS

ALICE

Gavin McCance CERN IT

CMS

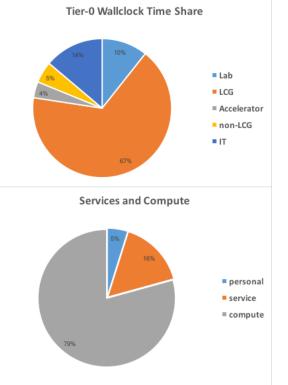

LHC 27 km

Outline

- Cloud and batch
- Opportunistic, mid-SLA, external cloud
- New computer centre
- Storage and databases

OpenStack@CERN Status

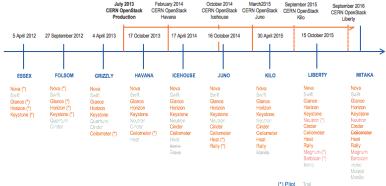
In production:


- >220K cores
- >7000 hypervisors

~86,000 additional cores being installed in next 6 months

90% of CERN's compute resources are now delivered on top of OpenStack

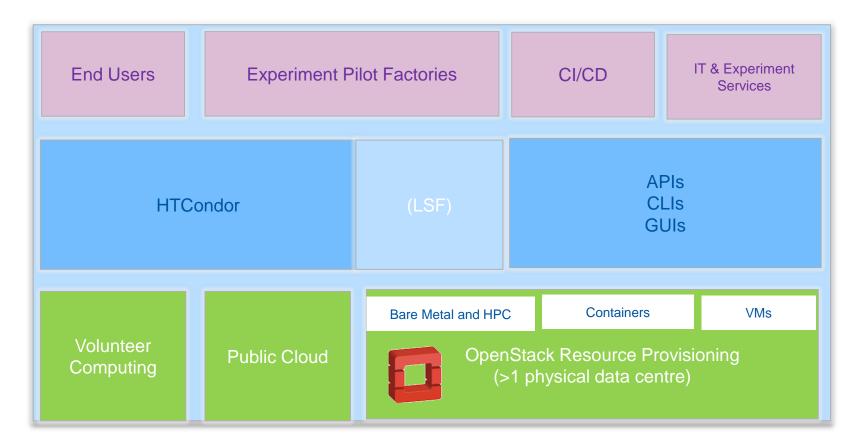
Service / Compute split


• Single resource pool for the lab infrastructure and the physics

- Majority of the resources are allocated for compute workloads
- However, a significant share of resources are used for "services" either IT or experiment

Openstack

- Still very happy with Openstack after 3 years
- Upgrades ~smooth and routine now
- Scaling out further soon > 280k
- Functional increments:
 - Live migrations
 - Container management (Magnum)
 - Bare-metal management (Ironic)
 - SDN (Neutron)


• We maintain involvement with upstream and actively contribute back to the project

Filer: Manilla and CephFS @ceph

- We're evaluating CephFS with Openstack Manilla for the replacement of the NFS Filer service (currently Netapp)
 - Horizontally scalable on Ceph
 - Tunable IOPs
 - Easy to attach/detach as needed
 - Looking very positive...

HTC Batch service

- Users:
 - LHC: Our share of WLCG Grid quota
 - LHC: Prompt Tier-0 calibration / hot events
 - LHC: Tier-0 bulk reconstruction
 - All other CERN experiments (e.g. Compass)
 - Local CERN departments (EP groups, Theory, Beams and Engineering)
 - Associated experiments (e.g. AMS)
 - About 50% Grid, 50% local

HTC Batch service

- Currently we have around 130k cores
 - Around 650k jobs per day
 - Split 50/50 LSF and HTCondor
 - On track for migration of major users and all LHC by Q3 this year
- Scaling to over 200k cores in batch by end of 2017
- 2018 2020 ... funding is being discussed...

Batch deployment model

- Vast majority deployed as long-lived VMs on Openstack using HTCondor vanilla universe
- For HTCondor we're aiming for uniform 8-core node standard workers, 30-50% as multicore
- Configuration maintained with Puppet
- Normal drain/reboot life-cycle
 - but if it fails, shoot it and get another one

• Small high-memory (~1TB) facility to be provided this year for special cases (CAF merging, theory, electronics, ...)

Containers

- Plans for Batch Service:
 - We'll soon deploy Singularity for experiments (pilot isolation)
 - We'll (likely) roll-out HTCondor Docker universe for job isolation
 - Condor-managed containers
 - Standard SLC6/CC7 image runners
 - ...and choose-your-own-image
 - CVMFS / EOS mounts, no AFS
 - Once AFS is gone, we'd like this to be our default for the future
- N.B. Also containers for services:
 - Also now running Openstack Magnum with DCOS/Kubernetes for better deployment of our *services*)
 - Need to work out reliable way of configuring the container's contents

HTCondor experience

- Very good experience, very good support
- Migrating all CEs to HTCondorCE
- "Free" monitoring from Fifemon (FNAL)
- Contribute where we can
 - e.g. improvements to "haggis" share management tool
- User migration fairly easy
 - Same pattern
 - Consultancy.. some wrinkles.. user limits, etc.
 - Hope to be done by end of Run 2

HPC facilities

- Apps that don't fit normal HTC pattern
- MPI, shared memory across nodes, infiniband
 - Lattice QCD Theory simulations, Beam / plasma, fluid dynamics applications (fire safety, cryo), engineering simulations (civil and electronic)
- New theory cluster now working well (72 nodes)
- Beams clusters (2*72) funding being discussed for Q4 '17
- SLURM batch system being deployed for this (~5k cores)
 - ...will backfill via HTCondor / SLURM interface

Volunteer

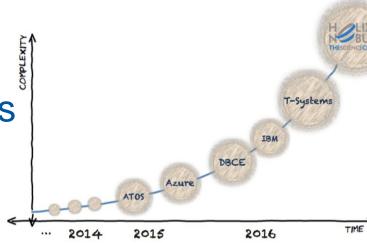
 Significant resources for beam simulation and LHC Monte Carlo, now integrated via HTCondor

LHC@home Service Statistics

Making better use

- Identifying how to exploit poorly used resources
- Significant potential extra capacity @CERN, if we are able to relax the normal HEP SLA a bit
- Examples:
 - disk-server CPU
 - spare service "headroom" on cloud, choppy cloud compute capacity, external cloud spot
 - HPC backfill, pre-empt by prompt work (Tier-0/CAF),
 - intervention draining

Mid-SLA


- Standard-kit, access to local storage
- Potentially resource squeezed (notably IOPS)
- No notice termination if the real owner wants it back
 - Possible batch-system pre-empt in some cases
- Will be exploring over next ~year with experiments how to make better use of these

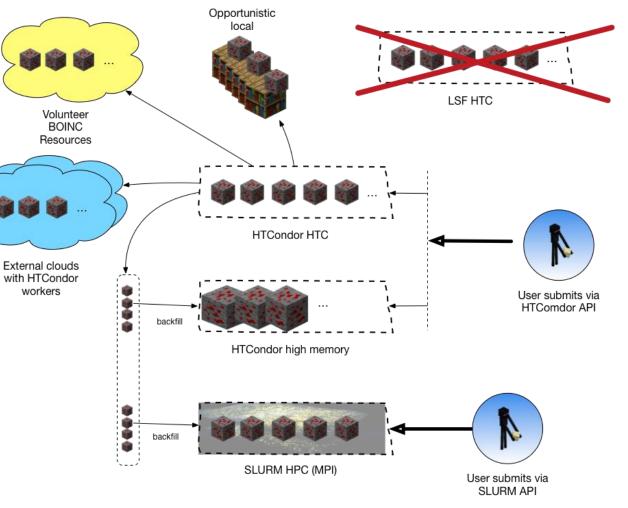
Commercial clouds

- Various projects and exercises with experiments to understand how we could use them
 - HNSciCloud currently
- Strategy:
 - Configure them as we do here (same Puppet)
 - Flat capacity, long-lived worker nodes exposed via the CERN HTCondor pool (special route)

Commercial clouds

- Most workflows tried
- Data is hard with current HEPpy protocols
 - Would need some evolution of experiment data models

- Can do reco from CERN, but heavy on network
- Strategy for mid-term, "cheap and cheerful":
 - Keep the capability and be able to spin up on any cloud with no extra effort using our standard tools (Terraform + Puppet)
 - Procure for standard tools support
 - Focus on simulation when we do
 - Related to mid-SLA, explore with experiments "spot" models

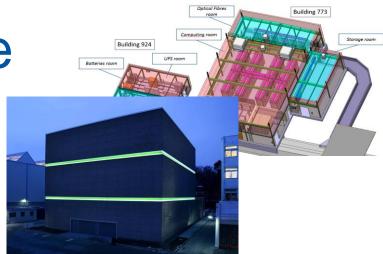


<u>Strategy</u>

Consolidate HTC around HTCondor interface

- Local
- Public cloud
- Volunteer
- Opportunistic
- Backfill

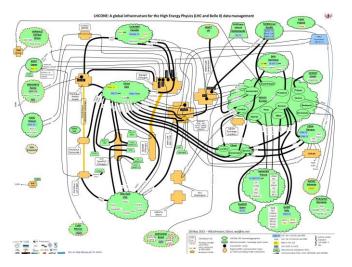
SLURM for HPC


New computer centre – why?

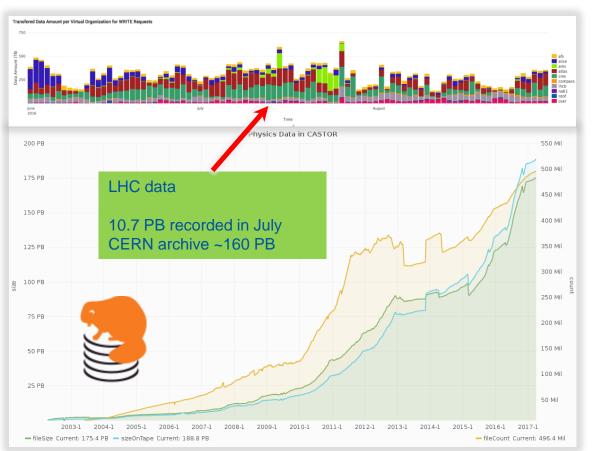
- LHCb and ALICE will be moving to SW triggers for RUN3 -> HLT farms need more capacity
 - Hard to accommodate this capacity at the pits
 - Probably also for ATLAS and CMS for RUN4
- Increased Tier-0 capacity will be required for RUN3 and beyond
- Other large computing needs are coming up, e.g. ProtoDune
- Commercial cloud computing not yet attractive for bulk

New computer centre

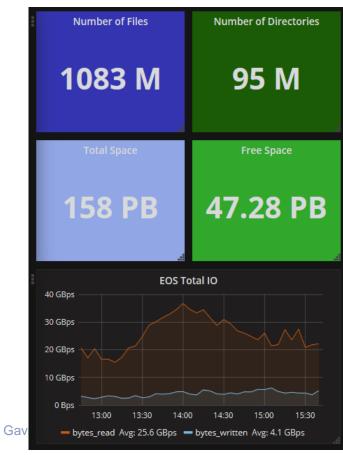
- GreenITCube @GSI
 - ...starting point for design call
 - Excellent PUE
 - Quick to build
- Current status:



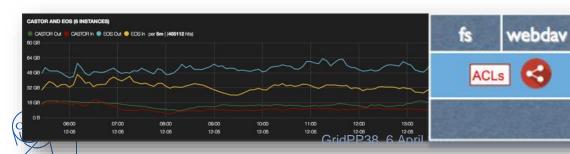
- ED will decide formally in May if we go ahead
 - In parallel, tenders out review in June FC
 - In parallel, CERN groups studying potential computing and network architectures (e.g. links to expt. areas)
- Contract signed summer (assuming approval)


Networking: LHCONE plans

- Continue to increase capacity
 of links
 - To handle LHC data growth
 - 100 Gbit T0-T1 where cost effective
- Expanding e.g. Asian links
- Continue deployment of perfSonar monitoring



Storage stats



EOS and CERNBox

- Consolidation on EOS for storage
 - Designed for very high performance open/read; low latency; tunable QoS
 - JBOD commodity hardware, ignore failed disks
 - Expanding range of protocols
 - Future: be able to take advantage of whatever disk
 technology brings
- CERNBox provides cloud sync (à la Dropbox)
 - Synchronise EOS files (data at CERN) and offline data access

share

xroot

Physical Storage

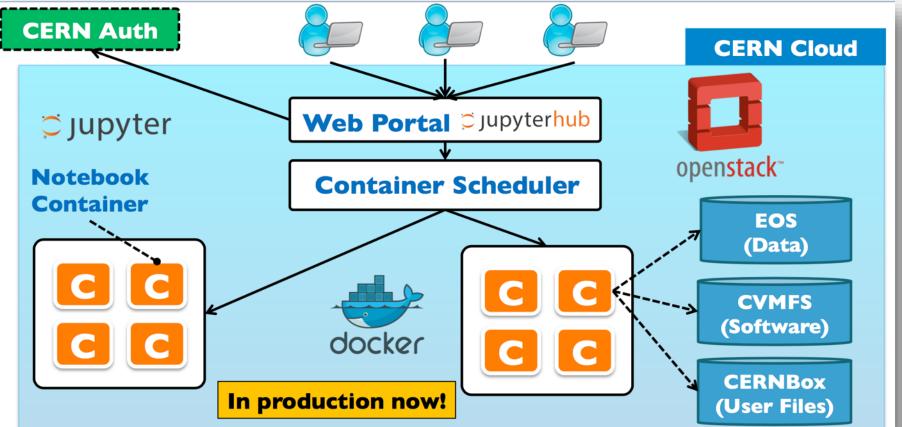
ERN**Box**

mobile

010110 110011 101000

AFS replacement

- Driven by gradual demise of upstream
- CERN planning to phase out gradually



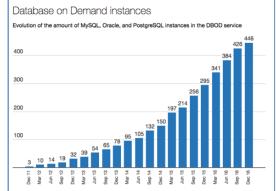
- Large migration effort aiming to be done during LS2
- Plan to consolidate on EOS for remaining use-cases
 - Significant steps to migrate already taken
 - Some developments ongoing inside EOS to support harder use-cases (e.g. homedirs)

SWAN Architecture – Data Analysis as a Service

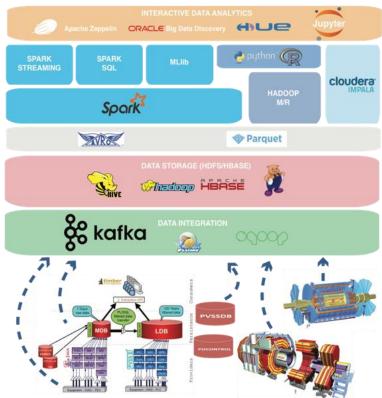
CÉ

Databases

- Oracle
 - For critical, transactional load (~100)
 - Example of critical production DBs:
 - Quench Protection System 150.000 changes/s
 - LHC logging database ~550 TB, expected growth up to ~100 TB / year
 - Administered by DBA team
- DBaaS
 - Different database engines:
 - MySQL (340), PostgreSQL (89), InfluxDB (31)
 - Instance owners have the most of DBA rights
- Hadoop
 - For sequential load and analytics



PostgreSQL



Hadoop and Analytics

- New scalable analytics services
 - Hadoop ecosystem
 - Spark and Kafka
 - Time Series databases
- Activities and objectives
 - CERN IT monitoring now moved to this
 - New CPU accounting developing on this infrastructure
 - Scalable platform, future evolution based on requirements

DB future work

- Hadoop / Spark / Kafka analytics service
 - Major commitments towards Kafka/Hadoop (LS2): WinCC OA (PVSS), ACCelerator LOGging (NXCALS), etc. require advanced service level
 - ATLAS EventIndex support and help for performance
 - Kafka pilot started to satisfy key projects (BE, IT, etc.)
 - Spark with ROOT/SWAN with EP-SFT
- "Preparation for Oracle database release 12.2 upgrade during LS2
- High Availability deployment for Database on Demand
- Database Futures" workshop 29th-30th May this year

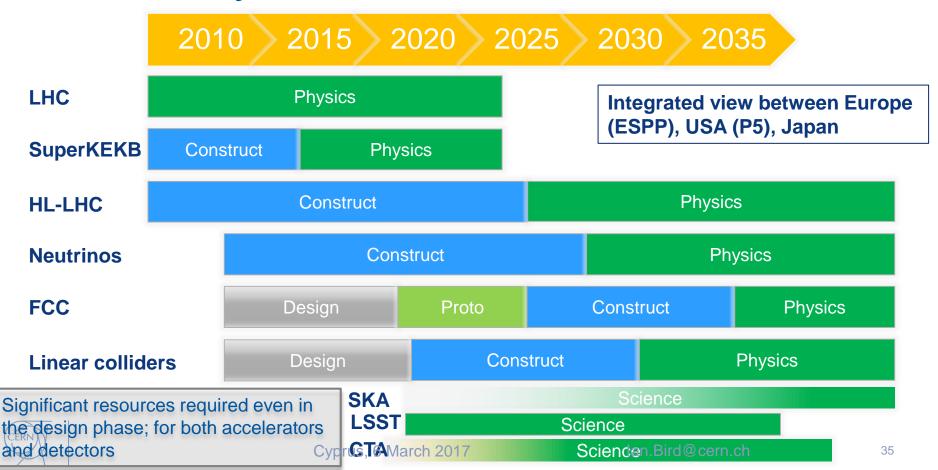
Ops tools

- Open-source everywhere
 - Focusing on Puppet
 - Focusing on automation (e.g Rundeck)
 - Contribute, don't build (or build within eco-system)
- Orchestration
 - Terraform (@hashicorp) for general cloud
 - OpenStack Magnum for containers, Heat for VMs
- Monitoring
 - Moving to collectd + analytics platform
 - Kafka to Elasticsearch (evaluating InfluxDB for time-series)
 - Kibana for detail, Grafana for dashboards
 - Spark/Hadoop for offline analysis

Tier-0 summary

- Use OpenStack base everywhere
- Use HTCondor for all compute
 - Efficiency, opportunistic mid-SLA, agility with standard tools
 - Cloud: no rush, maintain strategic capability
- New computing centre, to decide soon
- Consolidation on EOS for storage
- Databases DBoD further strengthening
- Big data / analytics tools in production
 - use-cases moving to the new analytics platform
- Ops tools open-source, contribute
 - Focus on monitoring and automation

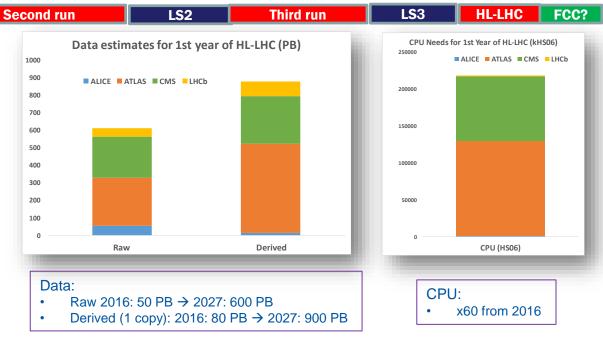
Backup



Some consequences

- Need to constrain costs
 - The main driver for WLCG is overall data volume (replication) & wide distribution
 - 2/3 of total global cost is in disk
- Infrastructure must no longer be (too) special
- Need to be able to use commercial & opportunistic resources
 - Including non-traditional for HTC: HPC, cloud, special architectures etc.
- Thus need significant agility and performance optimisation through software
- Learn from our experience and that of large internet companies
- Need flexibility/agility to changing markets e.g. cost of commercial resources, obsoleted technologies (perhaps overnight)
- Must recognise and leverage opportunities of commonality at all levels
 - Between experiments, HEP, across disciplines, with industry, ...
- Failure to change will limit the scientific output

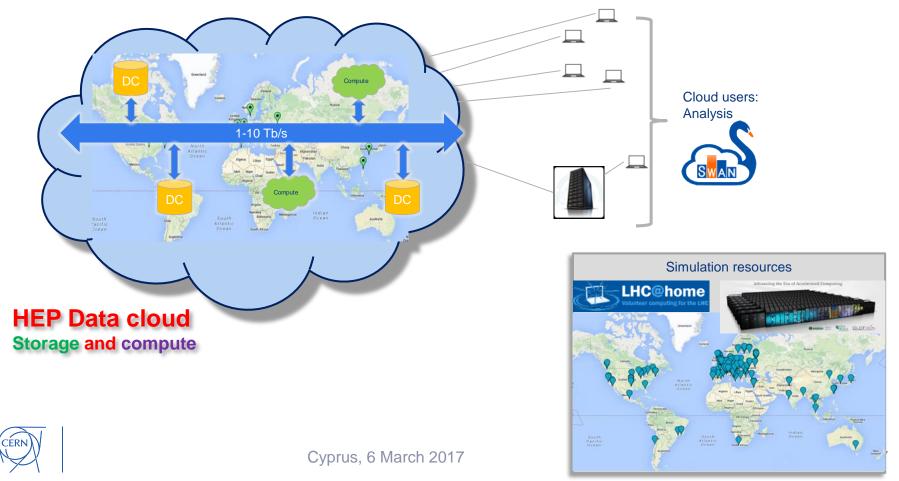
HEP Facility timescale


Future Challenges

LS1

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

First run


- Raw data volume for LHC increases exponentially and with it processing and analysis load
- Technology at ~20%/year will bring x6-10 in 10-11 years
- Estimates of resource needs at HL-LHC x10 above what is realistic to expect from technology with reasonably constant cost

2030?

Possible Model for future HEP computing infrastructure

