Imperial College London

LZ and SoLid computing

Antonin Vacheret

High Energy Physics group
Blackett Lab
Imperial College London

GridPP meeting Brighton, 07 April 2017

SoLid

Outline

- LZ dark matter experiment
 - data centers and computing activities
- SoLid very short baseline neutrino experiment
 - computing scheme
- Summary

LZ in a nutshell

LZ **COLLABORATION**

220 scientists from 37 institutes in the US, UK, Portugal, Russia & South Korea

University of Alabama ◊ Black Hills State ◊ University Brookhaven National Laboratory ◊ Brown University ◊ University of California, Berkeley ◊ University of California, Davis ◊ University of California, Santa Barbara ◊ Center for Underground Physics (Korea) ◊ Edinburgh University ◊ Fermilab National Laboratory ◊ Imperial College London ◊ Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) ◊ Lawrence Berkeley National Laboratory ◊ Lawrence Livermore National Laboratory ◊ LIP-Coimbra, Portugal & University of Liverpool & MEPHI-Moscow, Russia & University of Massachusetts & University of Maryland & Northwestern University & Pennsylvania State University & Oxford University & University of Rochester ♦ Rutherford Appleton Laboratory ♦ SLAC National Accelerator Laboratory ♦ SD School of Mines & Technology ◊ Shanghai Jiao Tong University ◊ University of Sheffield ◊ University of South Dakota ◊ SUNY University at Albany ◊ Texas A&M University ◊ University College London ◊ Washington University ◊ University of Wisconsin ◊ Yale University 32

Data centers in LZ

CPU and storage needs

FY	2015	2 016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Raw data	_	_	_	_	_	560	1680	2800	3920	5040	6160	
Calibration data	_	_	_	_	_	160	480	800	1120	1440	1760	
Simulation data	40	80	80	100	100	200	200	200	200	200	200	
Processed data	20	40	40	50	50	172	316	46 0	604	748	892	
User data	20	40	40	50	5 0	55	134	213	292	371	451	
Total data	80	160	160	200	200	1147	2810	4473	6136	7799	9463	
USDC: Disk space	40	220	220	220	220	1360	3360	5360	7360	9360	11360	ТВ
USDC: CPU cores	_	_	175	350	350	390	830	1270	1710	2150	2590	
UKDC: Disk space	150	220	220	270	650	1597	3260	4923	6586	8249	9913	TE
UKDC: CPU cores	150	175	350	350	350	390	830	1270	1710	2150	2590	

- ~1.4 PB total data generated per year of running (starting 2020)
- steady increase of CPU needs in 2018-2020 period and between 2x and 8x over data taking period
- 40 Hz data stream, assuming 1evt/s, 440 cores can reprocess 1 year of data in 1 month
- total storage capacity needed is ~ 10 PB including all raw data
- Numbers based on full production of MC

LZ MC & Analysis Software

- Software is based on Geant-4 and Gaudi packages
- Simulation requires large number of optical photons to be tracked in complex vessel geometry
 - already exploring what can be done with GPUs

NERSC is US data center

- ESnet & NERSC DOE-ASCR national facilities
- PDSF (~4000 SLC vcores)
 - LZ 230 fairshare job slots + opportunistic
- NGF (8.2 PB disk)
 - LZ 220 TB on /project & /projecta
- HPSS (150 PB tape)
 - ERCAP allocation model. No cost to LZ.
- Free: DTNs, Data Gateways, 24/7
 Operations, Networking, Account Mgt,
 Security, ...

Many-core HPC

- PDSF to be phased out in not too distant future
- USDC has been testing processing on NERSC emerging many-core machines
- looking into where and how Cori/HPC resources complement PDSF & UKDC.

NERSC CRAY Machine(s)

Cori

2,004 Xeon "Haswell" nodes

32 cores + 120 GB RAM

9,300 Xeon Phi "Knight's Landing" nodes (KNL)

68 cores +96+32 GB RAM

Edison

5586 "Ivy Bridge" nodes:

- 24 cores
- 61 GB RAM

Using Linux container ~ Thin VM

Shifter: Containers for HPC

Challenge and Opportunity

- Data Intensive computing often require large, complex software stacks
- Docker becoming standard package to run applications.

Innovation

- Shifter is a NERSC R&D effort, in collaboration with Cray, to support User-created Application images.
- Shifter provides "Docker-like" functionality for HPC

Impact and Early Successes

- Shifter has enabled multiple projects to quickly make use of NERSC (e.g. LCLS, LHC)
- Shifter can improve job-startup times and application performance (e.g. Python)
- Shifter will be supported by Cray and is under evaluation by other HPC centers

UK data center

E. Korolkova, V. Kudryavtsev, R. Taylor , A. Vacheret GridPP: D. Bauer, D. Colling, S. Fayer, A. Richards

- UK data center is hosted at Imperial College London and leverage on GridPP resources
- Servers (nodes & disk), network, software supported by non-LZ admins and developers
- UKDC team responsible for writing LZ scripts on top and running jobs
- LZ VO supported currently at 8 UK sites (Brunel, ICL, Lancaster, RAL-PP, Sheffield, Liverpool, Manchester, QMUL)
- Storage allocated as needed at Imperial Tier 2
- CPU allocated by fair share algorithm

Production for October Background Review (2016): final TDR numbers

Generated:

- 262 macros
- 6 × 10¹⁰ events
- All data volume:
 - 117 TB (UKDC)
- Reduced data
 - 10 TB (UKDC and PDSF)

CPU time: 640K CPU hours

- UK Data center achievement has been highly praised by other collaborators at a recent internal design review
- gridPP support was central to this success

MC production for October Background Review (2016)

- Additional components simulated and more statistics (compared to CD2 production)
- Realistic geometry synchronised with LZ Solid Model (CAD)
 - Top PMT array, Outer Detector and Skin design
- Increased statistics → reduced uncertainty in cases where previously only upper limits were set
- fastNEST: S1/S2 fast response based on latest TPC and Skin design
- Chain LUXSim (GEANT4.9.5-based, v.4.3.3) energy deposits →
 fastNEST (v.3.0.2) → analysis cuts mimicking data (TDRAnalysis v.
 3.13.1)
- CPU resources at 5 UK GridPP LZ-affiliated sites (Imperial, Sheffield, RALPP, Brunel, Lancaster)

Tools developments

- The UK data center is developing a web-based large scale production
 UK-DC
 job submission system
 - aim to simplify handling of requests for large scale submission of MC and data processing on the grid
 - remove the need for filling web-based spreadsheets
 - reduce manual operations to complete jobs
- data access from anywhere

large scale job submission system

LZ Production Requests

large scale job submission system

LZ Production Requests

Behind the scene

- MySQL DB bridges frontend web app and submission backend.
- Lightweight cherrypy webserver for web app frontend.

Monitoring daemon submits new requests from DB to Dirac.

Job submission system status

- Framework in place
- Security
 - encrypted https protocol using apache as reverse proxy
 - access based on X509 grid certificate (and LZ VO)
 - DN checks against user in DB (also recognise admin and normal users for request management)
- · currently working towards usability for first mock data challenge this summer
 - various processing options being developed
- develop the design to process on US clusters
- Improve re-usability of the interface for deployment in other experiments (e. g. SoLid)

SoLid

SoLid

- SoLid baseline : 6-9m from the BR2 MTR reactor at SCK CEN mol, Belgium
 - 5-6x movable modules on rail system 1.6-2 tonnes fiducial mass
 - External shielding based on H₂0 bricks and PE slabs.
- Experiment data taking in 2017-2021 period

Geant4 model of SoLid at BR2

Detector Modules and rail CROSS source calibration robot

Detector technology

SoLid computing challenges

- Precision measurement neutrino experiment on the surface
 - Large statisitical sample of antineutrino
- Large scale simulation and processing required for background model and physics sensitivity
 - · muons from atmosphere
 - Fast neutrons
 - Internal background
- Reactor evolution code for each reactor cycle with variable resolution in time
 - CPU and memory intensive especially for fine time resolution on burn up
- Development of deep learning algorithms
 - will require processing on GPUs especially for architecture optimisation

SoLid Computing scheme

- Data processing and simulation in UK and Belgium as baseline
- Reactor evolution calculations performed at Lyon computing center in France

SoLid computing needs and status

Data Type	/Day (GB)	Total 5 Years (TB)			
Physics raw files	$\mathcal{O}(100)^1$	$\mathcal{O}(100)$			
Physics reduced files	$\mathcal{O}(0.1)$	$\mathcal{O}(0.1)$			
Calibration	$\mathcal{O}(100)$	$\mathcal{O}(100)$			
Simulation	$\mathcal{O}(100)$	$\mathcal{O}(100)$			
Total	< 1	< 1000			

- Recently started SoLid VO and developing CVMFS based software
- · Discussion plans for where custodial copy will be held
 - expect UK to contribute significantly
- Main task in the UK is to prepare software for data processing and data monitoring
- Simulation currently ran at Brussels Tier-2
 - Simulation tasks in the UK to ramp up as we shift from construction this summer
- UK gridPP support key for delivering on the processing side of the experiment

SoLid Data Quality Monitor

- HTML based web monitoring.
 - Python backend using Flask & Bokeh (charts).
- Runs at detector site.
 - Remote access.
 - Users access via web browser (port forwarding for security).
- Interface with on-site databases for calibration and run book-keeping.
- Run control.

 Online oriented monitoring but preparing for integrating the data processing part of the experiment too

Web-based Event Display

- Three js graphics library.
- Visualise dynamic time window for viewing events.

Summary

• LZ

- Data centers are on track to enable the processing and storage of LZ raw data and MC simulation
- UK Data center has played a key role in CD milestones
- UK very active with new job submission system for management of large scale production
- Progress in US towards testing containers on Cori

SoLid

- Computing needs around x10 smaller than LZ but some challenges for
- Experiment currently developing plan for data taking pahse later this year
- Leverage on LZ job submission system for deeper integration
- gridPP support is key for UK institutes to play a leading role in non-LHC experiments
- · Interesting development on interface built on top of grid middlewares
- Machine learning is getting big and some groups are going to move heavily on it