Searches for Diboson Resonances in ATLAS

Chris Malena Delitzsch

University of Arizona

Experimental-Theory Seminar at University of Washington

April 3, 2017

Diboson resonances - Theoretical motivation

- Many extensions of the SM predict the existence of diboson resonances
 - Grand Unified Theories
 - Warped extra dimensions
 - Technicolor

Diboson resonances - Theoretical motivation

- Many extensions of the SM predict the existence of diboson resonances
 - Grand Unified Theories
 - Warped extra dimensions
 - Technicolor

- Three different benchmark models studied in ATLAS
 - Bulk Randall-Sundrum model
 - 2 Extended gauge model (EGM)
 - Heavy Vector Triple (HVT)

Benchmark models

1 Bulk Randall-Sundrum model

- Model of warped extra dimensions
- Spin-2 Kaluza-Klein graviton (G*)
- $G^* \rightarrow WW, ZZ$
- BR(G* \rightarrow WW) \approx 20% BR(G* \rightarrow ZZ) \approx 10%
- $\sigma(G^* \rightarrow ZZ) = 0.25$ fb ($m_{G^*} = 2$ TeV)

eavy Vector Triplet

- Simplified phenomenological Lagrangian
- Spin-1 gauge bosons (W', Z')
- W'
 ightarrow WZ and Z'
 ightarrow WW
- BR(W' \rightarrow WZ) \approx 2%
- $\sigma(W' \rightarrow WZ) = 7.5 \text{ fb} (m_{W'} = 2 \text{ TeV})$

Heavy Higgs

- Spin-0 H boson, narrow width approx.
- $H \rightarrow WW/ZZ$
- ggF and VBF production for $H \rightarrow ZZ$

How to find new physics - the easy way!

General idea

- $\bullet\,$ Search for new particle Z \to XX or XY
- Reconstruct invariant mass $m_{\rm XX/XY}$
- Search for narrow resonance on top of background

How to find new physics - the easy way!

General idea

- $\bullet\,$ Search for new particle Z \to XX or XY
- Reconstruct invariant mass $m_{\rm XX/XY}$
- Search for narrow resonance on top of background

The past: (re)discovery of SM particles

What about the diboson resonances?

• Leptonic final state

- Clean signature and low background
- Small branching ratio

- Hadronic decay of vector bosons
 - Large branching ratio:

 ${
m BR}(W o qq) pprox 3 imes {
m BR}(W o \ell
u)$

 ${
m BR}(Z \rightarrow qq) \approx 10 \times {
m BR}(Z \rightarrow \ell \ell)$

- No MET
- large dijet background
- Semi-leptonic decay channel:
 - "Golden channel"
 - Good compromise between fully hadronic and fully leptonic final state

What about the diboson resonances?

- Hadronic decay of vector bosons
 - Large branching ratio:

$$BR(W \to qq) \approx 3 \times BR(W \to \ell\nu)$$
$$BR(Z \to qq) \approx 10 \times BR(Z \to \ell\ell)$$

- No MET
- large dijet background

What about the diboson resonances?

- Hadronic decay of vector bosons
 - Large branching ratio:

$$BR(W \to qq) \approx 3 \times BR(W \to \ell\nu)$$

- $\mathrm{BR}(Z \rightarrow qq) \approx 10 \times \mathrm{BR}(Z \rightarrow \ell \ell)$
- No MET
- large dijet background

- **1** How can we measure the hadronically decaying vector bosons?
 - · Cannot measure quarks directly in the detector
 - \rightarrow reconstruct as jet

- THE UNIVERSITY OF ARIZONA
- I How can we measure the hadronically decaying vector bosons?
 - Cannot measure quarks directly in the detector
 - \rightarrow reconstruct as jet
- **2** How do we handle the high transverse momentum?

Low $p_{\rm T}$ vector bosons

- Decay products well separated
- Two small-R jets ($R \approx 0.4$)

High $p_{\rm T}$ vector bosons

- Decay products are collimated
- One large-R jet ($R \approx 1.0$)

- I How can we measure the hadronically decaying vector bosons?
 - Cannot measure quarks directly in the detector
 - \rightarrow reconstruct as jet
- O How do we handle the high transverse momentum?
- **O** How can we handle the high pile-up?

- large-R jet containing $t
 ightarrow bqar{q}$
- Jet mass depends on pile-up
- Jet mass diminishes with $\langle \mu
 angle$

Grooming techniques

- Remove soft gluon radiation and pile-up effects
- Improve jet mass resolution

- I How can we measure the hadronically decaying vector bosons?
 - Cannot measure quarks directly in the detector
 - \rightarrow reconstruct as jet
- O How do we handle the high transverse momentum?
- **I How can we handle the high pile-up?**

- I How can we measure the hadronically decaying vector bosons?
 - Cannot measure quarks directly in the detector
 - \rightarrow reconstruct as jet
- O How do we handle the high transverse momentum?
- **I How can we handle the high pile-up?**

- I How can we measure the hadronically decaying vector bosons?
 - Cannot measure quarks directly in the detector
 - \rightarrow reconstruct as jet
- O How do we handle the high transverse momentum?
- O How can we handle the high pile-up?
- **9** How can we suppress the enormous QCD dijet background?
 - $\sigma_{\rm dijet} \gg \sigma_{\rm BSM} \rightarrow$ use internal structure of large-R jet

Quark/gluon jet

- One region with high energy density
- Mass from wide-angle radiation

W/Z jet

- Two regions with high energy density
- $m_{
 m jet} pprox m_{W/Z}$
- Balanced subjet p_T

Jet mass + substructure variables

Jet mass

• QCD jets originate from \approx massless q/g

2 N-subjettiness τ_N

- Is the jet composed out of N subjets?
- Energy correlation variables C_2 , D_2
 - Similar idea to τ_N but does not require subjets

THE UNIVERSITY OF ARIZONA

Signal efficiency and background rejection

THE UNIVERSITY OF ARIZONA

- Derived two working points: $\varepsilon_{sig} = 25\%$, 50%
- Tagger based on trimmed jets + mass + D_2 criteria
- Error bands show statistical + systematic uncertainties
- For 50% signal efficiency: bkg rejection of 60 or bkg eff. of 1.6%
- Tagger has been updated for Moriond using combined mass (more details later)

signal efficiency

background rejection

Diboson analyses in a nutshell

- Search for resonant structure in m_{WW}, m_{ZZ}, m_{WZ}
- Analysis performed with 13.2-15.5 fb⁻¹ of 13 TeV *pp* collisions (ICHEP)
- Covering today:
 - WV $\rightarrow \ell \nu q q$ ATLAS-CONF-2016-062
 - ZZ/ZW $\rightarrow \ell \ell q q$, $\nu \nu q q$ ATLAS-CONF-2016-082
 - VV \rightarrow JJ ATLAS-CONF-2016-055

$WV \rightarrow \ell \nu qq$ - Overview

Event selection (only merged analysis for ICHEP)

- One lepton
- ullet ≥ 1 large-R jet
- $E_{\mathrm{T}}^{\mathrm{miss}} > 200 \; \mathrm{GeV}$
- $p_{\mathrm{T}}(J)/m_{\ell
 u J} > 0.4$, $p_{\mathrm{T}}(\ell
 u)/m_{\ell
 u J} > 0.4$
- Reject events close-by small-R b-tagged jet
- High purity and low purity SR based on D_2

Background estimation

- Shape estimated from MC
- Normalisation for W+jets and $t\overline{t}$ taken from CR
- $t\bar{t}$ CR: require close-by *b*-tagged jet
- W+jets CR: invert mass window
- Simultaneous fit to CR + SR

$WV \rightarrow \ell \nu qq$ - Results

Dominating systematic uncertainties

- Scale and resolution uncertainties for D_2
- Energy and mass scale uncertainties for large-R jet
- Modelling of background shape
- About 10-20% effect on signal strength

Results

	WZ signal region	W+jets control region	$t\bar{t}$ control region
High-purity category			
W+jets	1810 ± 92	3050 ± 120	194 ± 28
$t\bar{t}$	830 ± 87	1130 ± 82	2300 ± 100
Single-t	160 ± 23	221 ± 26	312 ± 38
Z+jets	18.1 ± 5.1	50.7 ± 8.4	11.5 ± 2.6
Dibosons	165 ± 43	68 ± 18	19.8 ± 5.5
Total SM	2990 ± 70	4520 ± 97	3510 ± 94
Data	2972 ± 55	4534 ± 67	3509 ± 59
Low-purity category			
W+jets	4003 ± 130	7250 ± 196	670 ± 85
$t\bar{t}$	670 ± 72	1505 ± 120	3150 ± 125
Single-t	153 ± 21	284 ± 33	409 ± 46
Z+jets	54.1 ± 4.0	126 ± 12	16.7 ± 3.3
Dibosons	155 ± 40	135 ± 34	19.2 ± 6.1
Total SM	5035 ± 100	9300 ± 180	4260 ± 95
Data	5059 ± 71	9276 ± 96	4270 ± 65

No significant deviations observed from SM prediction

$WV ightarrow \ell u qq$ - Limits

- $\bullet~95\%$ CL upper limits on cross-section times BR
- Exclude W' with $m_{W'} < 2400$ (2540) GeV for HVT Model A (B)
- Exclude Z' with $m_{Z'} < 2500$ (2810) GeV for HVT Model A (B)
- Improvement of more than one TeV with respect to previous analysis

- Model A: similary to extended gauge model
- Model B: coupling to fermions is suppressed

$\mathrm{WV} \rightarrow \ell \nu q q$ - Limits II

- 95% CL upper limits on cross-section times BR
- Exclude RS Graviton with masses below 1240 GeV
- Improvement of approximately 200 GeV with respect to previous analysis

$\mathsf{ZV} \to \ell\ell qq$ - Overview

- Consider both merged and resolved regime
- First study of VBF production in Higgs doublet model (tag two additional jets)

Event selection

- Two isolated leptons
- $m_{\ell\ell}$ compatible with Z-boson mass
- merged: min $(p_{\rm T}(J), p_{\rm T}(\ell \ell))/m_{\ell \ell J} > 0.3 \ (0.35)$
- resolved: *b*-tag categories for H search
- High purity and low purity SR based on D_2

Background estimation

- Shape estimated from MC
- Z+jets and $t\bar{t}$ norm. estimated in CR
- tt CR: diff. flavour leptons, 2 b-tagged jets
- Z+jets CR: invert mass window
- Simultaneous fit to CR + SR

$\mathsf{ZV} \to \ell\ell qq$ - Results

Dominating systematic uncertainties

- Jet energy scale and resolution uncertainties
- Scale and resolution uncertainties for D_2
- Z+jets modelling

Results

$\mathsf{ZV} \to \ell\ell qq$ - Limits

- 95% CL upper limits on cross-section times BR
- Exclude RS Graviton with masses below 1035 GeV (\sim 200 GeV improvement)
- Exclude W' with $m_{W'} < 2225$ GeV (~ 800 GeV improvement)

$ZV \rightarrow \nu \nu qq$ - Overview

ATLAS Preliminar

W+jets Z+jets SM diboson Top Quarks

S = 13 TeV, 13.2 fb

Observable: transverse mass:

$$m_{
m T}=\sqrt{({\cal E}_{
m T,J}+{\cal E}_{
m T}^{
m miss})^2-({ec p}_{
m T,J}+{ec E}_{
m T}^{
m miss})^2}$$
, with ${\cal E}_{
m T,J}=\sqrt{m_{
m J}^2+p_{
m T,J}^2}$

Event selection

- Lepton veto
- $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \; \mathrm{GeV}$
- $\Delta \Phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, ec{E}_{\mathrm{T}}^{\mathrm{miss}}) < 1$

• High purity and low purity SR based on D₂

$\mathsf{ZV} \rightarrow \nu \nu \textit{pq}$ - Systematics + Background estimation

Dominating systematic uncertainties

- Jet energy scale and resolution uncertainties
- Scale and resolution uncertainties for D_2

Background estimation

- Z+jets, W+jets and tt CR to determine normalisation in SR
- Z+jets estimated from Z → μμ + J (with m_J outside of Z-boson window)
- CR use new definition of $E_{\rm T}^{\rm miss}$ removing muon contribution
- Build transverse mass with new $E_{\rm T}^{\rm miss}$ definition
- Two SR and 6 CR are used in fit

$ZV \rightarrow \nu \nu \eta q$ - Results

No significant deviations observed from SM prediction

$ZV \rightarrow \nu \nu \eta q$ - Limits

- 95% CL upper limits on cross-section times BR
- Exclude RS Graviton with masses below 1100 GeV (\sim 200 GeV improvement)
- Exclude W' with $m_{W'} < 2400$ GeV (~ 700 GeV improvement)

VV → JJ - Overview

- Require two large-R boson-tagged jets ightarrow addition $n_{
 m trk}$ cut
- Dominating background: QCD dijet production
- Rapidity difference $|y_1 y_2|$ (reject *t*-channel QCD production)
- p_{T} asymmetry $|(p_{\mathrm{T}_{1}} p_{\mathrm{T}_{2}})|/(p_{\mathrm{T}_{1}} + p_{\mathrm{T}_{2}})$ (quality criteria)
- Overlap between WW, WZ, ZZ selection due to chosen mass window

Number of ghost-associated tracks

- $n_{\rm trk}$: number of ghost-associated tracks to ungroomed jets
- Gluons produce more particles during fragmentation
- Measure efficiency in V+jets events in data

Background Parameterisation

• m_{JJ} bkg distribution assumed to be smoothly falling, characterised by:

$$\frac{\mathrm{d}n}{\mathrm{d}x} = p_1(1-x)^{p_2+\xi p_3} x^{p_3}, \quad x = m_{jj}/\sqrt{s}$$

- p_1 : normalisation, p_2 , p_3 dimensionless shape parameters, ξ constant
- Binned maximum-likelihood fit performed to data to estimate background

Results

Statistical interpretation

Towards W vs Z discrimination

- **Drawback** of the analyses: cannot discriminate between *W* and *Z* boson due to overlapping mass windows
- Overlapping due to degradation of mass resolution at high $p_{\mathrm{T}}
 ightarrow$ use tracks

THE UNIVERSITY

W vs. Z discrimination

- Track-assisted mass improves discrimination but need more
- Three dimensional likelihood ratio
- Jet mass, jet charge and *b*-tagging discriminant
- Jet charge:

$$Q = rac{1}{oldsymbol{p}_{\mathrm{T,J}}^\kappa} \sum_{i \epsilon \mathrm{Tracks}} q_i imes (oldsymbol{p}_{\mathrm{T}}^i)^\kappa$$

•
$$\varepsilon_Z = 90\%, \; 50\%, \; 10\% \to 1/\varepsilon_W = 1.7, \; 8.3, \; 1000$$

Jet uncertainty improvement

- THE UNIVERSITY OF ARIZONA
- Currently the searches are dominated by large-R jet uncertainties
- Uncertainties are derived using track-jet double ratio (probe calorimeter measurement with that from **track-jets**)
- Improve jet energy unc. significantly using γ or small-R jets as reference
- Improve jet mass scale unc. by using W boson resonance peak in $t\bar{t}$ events

Forward folding method (ATLAS-CONF-2016-035)

- Avoids finding functional form for response function
- Shift and stretch mass resolution function to best match the data

Improving tagging techniques

How can we improve the performance of our boson taggers???

- Constituent-level pile-up suppression techniques
- Variable-radius jets (ATL-PHYS-PUB-2016-013)
- Optimise tagging algorithm for different polarisations
- Flat background rejection?
- Multivariate analyses ...
 - New ATLAS publication ATL-PHYS-PUB-2017-004
 - W and top tagging studied using BDT and DNN

- The diboson final state provides a direct key to new physics beyond the SM \rightarrow small excess observed in 8 TeV data
- For high resonance masses, the decay products of the W/Z bosons are boosted \rightarrow need **novel** and **innovative** reco techniques for hadronic decay
- No significant deviation from background expectation observed at 13 TeV \rightarrow set upper limits on cross-section \times BR for benchmark models
- Analyses will be updated for EPS/LHCP using full 2015+2016 dataset
- Challenge of analyses: substructure techniques at very high-p_T

Backup

Outlook - Variable-R jets

$$R_0
ightarrow R_{
m eff} = rac{
ho}{
ho_{
m T,i}}$$

- Still need additional pile-up suppression techniques
- VR + trimming outperforms trimming at high p_{T}

THE UNIVERSITY

Outlook - Variable-R jets - II

• Use variable jet radius size:

$$R_0
ightarrow R_{
m eff} = rac{
ho}{
ho_{
m T,i}}$$

- Still need additional pile-up suppression techniques
- VR + trimming outperforms trimming at high p_{T}

Extended Gauge Model

- Does not solve shortcomings of the Standard Model
- Predicts existence of heavier spin-one vector bosons W' and Z'
- Coupling of W' to fermions as in the SM
- W'WZ coupling suppressed by $c \cdot (m_W^2/m_{W'}^2)$
- Width of W' increases linearly with its mass (pprox3.5%)

- Simplified phenomenological Lagrangian as diboson resonance searches only sensitive to parameters that retain mass and coupling strength
- Allows to describe a large class of models
- Coupling of vector triplet to fermions: $(g^2/g_V^2) \cdot c_{
 m F}$, $c_{
 m F} pprox 1$
- Coupling to vector bosons and Higgs boson: $g_V c_H$
- Model A: $g_V = 1$, Model B: $g_V = 3$
- BR($W' \rightarrow WZ, Z' \rightarrow WW \approx 2\%$)
- Width of new spin-one particles: 2.5% of mass

Bulk Randall-Sundrum model

- Provides solution to hierarchy problem and results in unification of coupling constants
- four-dimensional spacetime is embedded in larger dimensional bulk with one single warped extra dimension
- SM gauge bosons and fermions are allowed to propagate in additional dimension (as opposed to previous model)
- Higgs field is contained in TeV brane, gravitation localised at Planck brane
- $\bullet\,$ SM particles propagating through bulk \to Kaluza-Klein excitations
- spin-2 KK graviton close to TeV scale with decays mostly to top, Higgs, WW and ZZ
- Width: approx. 6% of resonance mass
- BR($G^* \rightarrow WW$) pprox 18% and BR($G^* \rightarrow ZZ$) pprox 9.5%

- Higgs boson at high mass in the narrow width approximation
- Higgs width is about 4 MeV, much less than experimental resolution
- WW results interpreted in CP-even scalar singlet model:
 - Naive dimensional analysis: $c_3 = 1/(4\pi)^2$, $c_H = 0.9$
 - Unsuppressed: $c_3 = 1/8\pi$, $c_H = 0.4$
- c_3 determines production cross-section and decay width to gluons
- Unsuppressed: BR ($H \rightarrow WW$) = 59% 73%

What are jets?

THE UNIVERSITY OF ARIZONA

- Confinement of the strong force \rightarrow quarks/gluons not directly measured
- Measure particles produced in the showering and hadronization
- Jets are collimated bunches of energetic particle
- Jets are not directly mappable to individual partons
 - finite calorimeter resolution, gaps, cracks, dead material ...

Jet reconstruction in ATLAS

Used to cluster objects into a jet based on their angular separation

$$d_{ij} = \min(k_{ti}^{2p},k_{tj}^{2p}) rac{\Delta_{ij}^2}{R^2} \quad (R: ext{jet radius})$$

- p = 1: k_t
- p = -1: anti- k_t : clusters most energetic particles first
- p = 0: C/A : based on angular separation

There is no *correct* jet def., but require **infrared and collinear safety**

Infrared and collinear safe

Infrared safety

• Result of jet algorithm does not change with additional soft radiation

Collinear safety

• Hard particle that are splitting in two soft particles give nearly the same result

Jet grooming in a nutshell

Trimming

• Removes subjet (size $\mathsf{R}_{\mathrm{sub}}$) if: $p_{\mathrm{T}}^i/p_{\mathrm{T}}^{\mathrm{jet}} < f_{\mathrm{cut}}$

Jet grooming in a nutshell

Trimming

• Removes subjet (size $\mathsf{R}_{\mathrm{sub}}$) if: $p_{\mathrm{T}}^i/p_{\mathrm{T}}^{\mathrm{jet}} < f_{\mathrm{cut}}$

Mass drop/filtering

- Splitting: require symmetric splitting $\sqrt{y_f} = \frac{\min(p_{T1}, p_{T2})}{m_{T2}} \times \Delta R_{12}$
- Filtering: remove soft radiation by keeping only N hardest subjets

Jet grooming in a nutshell

Trimming

• Removes subjet (size $\mathsf{R}_{\mathrm{sub}}$) if: $p_{\mathrm{T}}^i/p_{\mathrm{T}}^{\mathrm{jet}} < f_{\mathrm{cut}}$

Mass drop/filtering

- Splitting: require symmetric splitting $\sqrt{y_f} = \frac{\min(p_{T1}, p_{T2})}{m_2} \times \Delta R_{12}$
- Filtering: remove soft radiation by keeping only N hardest subjets

O Pruning

- For each step in reclustering, remove softer constituent from jet if
 - $\bullet~\mbox{wide-angled:}~R_{12}>R_{cut}\cdot 2m/p_T$ or

• soft:
$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1}+p_{T,2}} < Z_{cut}$$

Jet mass

 $t\bar{t} \rightarrow lep+jets$ events in data

• Calculated from the constituents of the jet, e.g. topo-clusters, tracks

$$m^2 = \left(\sum_i E_i\right)^2 - \left(\sum_i \vec{p}_i\right)^2$$

Simulation

N-subjettiness

• Describes how likely it is that a jet is composed out of N subjets:

$$\tau_{N} = \frac{\sum_{k} p_{\mathrm{T,k}}(\min(\Delta R_{1,k}, R_{2,k}, ..., R_{N,k}))^{\beta}}{\sum_{k} p_{\mathrm{T}}(R_{0})^{\beta}}$$

• Powerful discrimination using the ratio: τ_2/τ_1

$t\bar{t} \rightarrow lep+jets$ events in data

Energy correlation variables

Energy correlation C_2 and D_2

$$C_2^{\beta} = \frac{E_{CF}1(\beta)}{E_{CF}2(\beta)} \times \frac{E_{CF}3(\beta)}{E_{CF}2(\beta)} \qquad D_2^{\beta} = \frac{E_{CF}^31(\beta)}{E_{CF}^32(\beta)} \times E_{CF}3(\beta)$$

N-point energy correlation function

$$E_{CF}1(\beta) = \sum_{i \in J} p_{T_i}, \quad E_{CF}2(\beta) = \sum_{i < j \in J} p_{T_i} p_{T_j} (\Delta R_{ij})^{\beta},$$
$$E_{CF}3(\beta) = \sum_{i < i < k \in J} p_{T_i} p_{T_j} p_{T_k} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})^{\beta},$$

Simulation

 $t\overline{t} \rightarrow lep+jets$ events in data

Track-jet double ratio method - Intro

- Jet mass measurement in calorimeter probed with track-jets as reference
- Track-jets are well measured and independent of calorimeter and pile-up
- Ratio of calorimeter and track jet mass:

$$r_{\mathrm{track\ jet}}^{m,\mathrm{data/MC}} = rac{m_{\mathrm{jet}}^{\mathrm{data/MC}}}{m_{\mathrm{track\ jet}}^{\mathrm{data/MC}}}$$

- Allows for separation between physics and detector effects (if new physics affects both calorimeter and ID)
- If detector effects are well modelled in simulation, the ratios in data and MC should be in decent agreement:

$$R^m_{
m track\ jet} = rac{r^{m,
m data}_{
m track\ jet}}{r^{m,
m MC}_{
m track\ jet}}$$

Jet mass scale uncertainty determination

Left:

- $r_{\text{track jet}}^{m,\text{data/MC}} < 1$ due to trimming procedure \rightarrow track-based grooming
- $r_{\rm track\ jet}^{m,{\rm data}/{
 m MC}}pprox 2$ due to soft particles (bent by magnetic field

Right:

- Mean of $r_{\text{track jet}}^{m,\text{data/MC}}$ used to estimate uncertainties (less fluctuations))
- \bullet Uncertainties derived in $\eta,\,p_{\rm T}$ and $m/p_{\rm T}$ bins
- $m/p_{\rm T}$: mass dependent uncertainties (but independent of the actual scale)

How to find the "best" groomer

How to find the "best" tagger

ATLAS Simulation Jet 4-momentum not calibrated $|\eta^{\text{Truth}}|{<}1.2$, 350 ${<}~p_{\tau}^{\text{Truth}}{<}$ 500 GeV , M Cut √s=8 TeV ★ = Optimal substructure variable for jet algorithm C/A R=0.6 (µ=1,R_{outh}=0.3,y_{th}=9%) 50% 60 C/A R=0.6 (µ=1,R_{outh}=0.3,y_{tht}=4%) C/A R=0.6 (µ=1,R_{outh}=0.3,y_{tat}=0%) C/A R=0.8 (µ=1,R_{ab}=0.3,y_{ab}=9%) C/A R=0.8 (µ=1,R_{out}=0.3,y_{str=4\%}) ~ ∞ C/A R=0.8 (µ=1,R _____=0.3,y ___=0%) 50 C/A R=1.2 (µ=1,R_{_{exp}}=0.3,y_{_{exp}}=15\%) ഗ≥ C/A R=1.2 (µ=1,R_,=0.3,y_m=12%) Ψ C/A R=1.2 (µ=1,R_{_{cub}}=0.3,y_{_{EB}}=9\%) 0 C/A R=1.2 (µ=1,R_{outh}=0.3,y_{tat}=4%) C/A R=1.2 (µ=1,R_{out}=0.3,y_m=0%) 40 Background rejection C/A R=0.6 (R =0.5.Z =0.15 C/A R=0.6 (R___=0.5,Z___=0.1) C/A R=0.8 (R =0.5,Z =0.15) C/A R=0.8 (R_==0.5,Z_==0.1) 30 C/A R=1.0 (R_=0.5,Z_=0.15) C/A R=1.0 (R_==0.5,Z_==0.1) C/A R=1.2 (R_out=0.5,Z_out=0.15) C/A R=1.2 (R =0.5,Z_=0.1) 20 C/A R=0.6 (f =5%,R =0.2) anti-k, R=0.8 (f_==5%, R_==0.2) C/A R=0.8 (f_==5%, R_===0.2) anti-k, R=1.0 (f_cut=5%, R_sub=0.3) anti-k, R=1.0 (f___=5%, R__==0.2) 10 C/A R=1.0 (f_=5%,R_==0.2) anti-k, R=1.2 (f_ut=5%,R_ub=0.2) C/A R=1.2 (f =5%, R = 0.2) ഹ് ∢

April 3, 2017

Split-Filtered

²runed

Trimmed

49

Boosted boson tagging in Run-2

• Aim:

- Provide W and Z boson tagging algorithm (50% signal efficiency)
- Derive dedicated jet energy/mass calibration + systematic uncertainties
- Studies heavily based on 8 TeV effort

 $\begin{array}{ll} \textit{ATLAS} & \text{Simulation Preliminary} \\ \hline \sqrt{s} = 13 \ \text{TeV} & \star = \text{Optimal grooming + tagging combination} \\ |\eta^{Truth}| < 2.0, 200 < p_{T}^{Tuth} < 350 \ \text{GeV}, \ M^{\text{Reco}} \ \text{Cut} & W\text{-jets} \end{array}$

Boson identification criteria

- 15 GeV window around mean is chosen ightarrow signal efficiency pprox 55-80%
- Smooth criteria on $D_2^{eta=1}
 ightarrow {f flat}$ signal efficiency of 50%

THE UNIVERSITY

Boson tagging in CMS

- Considered three different W-tagger algorithms (anti- $k_t R = 0.8$)
 - 1 pruning $+ \tau_{21}$ (à la Run-I)
 - 2 soft drop + τ_{21} (PUPPI)
 - **3** soft drop + DDT (mass and $p_{\rm T}$ independent version of τ_{21}) (PUPPI)

Boson tagging in CMS - $p_{\rm T}$ dependence

Boson tagging in CMS - $N_{\rm PV}$ dependence

Soft-drop

THE UNIVERSITY OF ARIZONA

• Preferred by theory community

Algorithm:

- **()** Recluster constituents of large-R jet j (e.g. anti- k_t) with C/A algorithm
- **2** Undo the last stage of C/A clustering and label the two subjets *j*1 and *j*2
- If the subjets pass the soft-drop condition:

$$rac{\min(oldsymbol{p}_{\mathrm{T1}},oldsymbol{p}_{\mathrm{T2}})}{oldsymbol{p}_{\mathrm{T1}}+oldsymbol{p}_{\mathrm{T2}}}> z_{\mathrm{cut}}\left(rac{\Delta R_{\mathrm{12}}}{R_{\mathrm{0}}}
ight)^{eta}$$

the jet j is considered as final jet. Otherwise define j to be equal to the subjet with larger $p_{\rm T}$ and iterate the procedure

Pile-up suppression techniques used in CMS

• Charge Hadron Subtraction (CHS):

removes charged particles associated with pileup vertices

• PileUp Per Particle Identification (PUPPI):

Define variable α for each particle-flow particle *i* using close-by particles *j*:

$$lpha_i = \sum_j rac{p_{\mathrm{T}}^j}{\Delta R_{ij}} heta(R_{\mathrm{min}} < \Delta R_{ij} < R_0)$$

Transform α into weight that is used during the reconstruction algorithm

Boson tagging requirements in Run-I analysis

3

• Jet reconstruction:

C/A R = 1.2 jets groomed with the BDRS (split-filtering) algorithm

Boson tagging:

(1) the large-*R* jet mass m_J (13 GeV mass window around boson mass)

$$y_{\rm f}$$
 as tagging variable: $\sqrt{y_{\rm f}} = \frac{\min(p_{\rm T1}, p_{\rm T2})}{m_{12}} \times \Delta R_{12}, \ \sqrt{y_{\rm f}} > 0.45$

- QCD dijet events have unbalanced subjet momenta compared to signal jets due to soft gluon radiation
- O Number of charged-particle tracks associated to the ungroomed jet:
 - $n_{
 m trk} <$ 30: expect QCD jet to be composed of more hadrons

Shaping of background of tagging criteria

- Left: Comparison of no tagging criterion and only one boson tagging requirement applied to each jet
- Right: The effect of applying all tagging requirements except one is displayed.

Cross-check - Detector Effect?

• η vs m_{JJ} for the leading jet (left) and subleading jet (right)

Local p_0 value

Limits on benchmark models

- $\sigma imes \mathrm{BR}$ for gravitons with chosen model parameters too low to be excluded
- Exclude 1300 < M(W') < 1500 GeV

Run-II tagger on Run-I data

- WW selection
- Trimmed anti- $k_t R = 1.0$ jets with criteria on mass and $D_2^{\beta=1}$
- Dedicated 8 TeV jet energy and mass calibration

Run-II tagger on Run-I data

- ZZ selection
- Trimmed anti- $k_t R = 1.0$ jets with criteria on mass and $D_2^{\beta=1}$
- Dedicated 8 TeV jet energy and mass calibration

Run-II tagger on Run-I data

- WZ selection
- Trimmed anti- $k_t R = 1.0$ jets with criteria on mass and $D_2^{\beta=1}$
- Dedicated 8 TeV jet energy and mass calibration

Combination overview

- Consider four different channels: $\ell \nu \ell' \ell'$, $\ell \ell qq$, $\ell \nu qq$ and qqqq
- Statistical independent analyses due to orthogonal event selection
- Correlations of systematic uncertainties in the different channels considered in statistical interpretation
- Optimisation of analysis sensitivity using different signal regions
 - $\ell \nu \ell' \ell'$: low- $p_{\rm T}$ resolved, high- $p_{\rm T}$ resolved
 - $\ell\ell qq$, $\ell\nu qq$: low- $p_{\rm T}$ resolved, high- $p_{\rm T}$ resolved, high- $p_{\rm T}$ merged
- Resolved analyses: hadronic W/Z decay reconstructed with two R = 0.4 jets
- MC-based background estimation but control regions in data to correct normalisation and shape

Acceptance \times Efficiency

• Highest acceptance \times efficiency

- $G^* \rightarrow WW: \ell \nu q q$
- $G^* \rightarrow ZZ$: qqqq (except for very high masses)
- $W' \rightarrow WZ$: $\ell \nu qq$ ($m_{JJ} < 1.3$ TeV) and qqqq ($m_{JJ} > 1.3$ TeV)

 p_0 values

• Largest deviations observed for the $W' \rightarrow WZ \rightarrow JJ$ analysis at $m_{W'} = 2.0$ TeV with 3.4σ

• Other channels do not observe any deviations at $m_{W'} = 2.0$ \rightarrow significance decreases to 2.5σ

CMS diboson resonance searches - I

$\mathbf{W}' \to \mathbf{W}\mathbf{Z} \to \ell\nu\ell'\ell'$

• Excluded EGM W' with $m_{W'} < 1.47$ TeV (ATLAS: $m_{W'} < 1.52$ TeV)

CMS diboson resonance searches - II

$\ell \nu \mathbf{q} \mathbf{q} + \ell \ell \mathbf{q} \mathbf{q}$

- Interpreted only in terms of two bulk graviton models with $k/\bar{M}_{\rm Pl}=0.5,~0.2$
- Set upper limits on the cross-section times branching ratio

CMS diboson resonance searches - III

qqqq

- C/A R= 0.8 pruned jets with mass (70-100 GeV) + au_{21}
- $\bullet\,$ Interpreted in terms of EGM model + RS and bulk graviton model
- Exclude $G_{RS} \rightarrow WW$ with masses below 1.2 TeV $(k/\bar{M}_{\rm Pl}=0.1)$
- Exclude EGM W' with $m_{W'} < 1.7$ TeV (ATLAS: $1.3 < m_{W'} < 1.5$ TeV)

$n_{\rm trk}$ efficiency measurement - Introduction

• Improved modelling with respect to Run-I due to special PYTHIA8 tunes

- Measure efficiency in V+jets events in data
- V + jet selection: 500 $< p_{\rm T}^{\rm lead} <$ 700 GeV, $D_2^{\beta=1}$ criteria

$n_{\rm trk}$ efficiency measurement

- QCD dijet background: exponential + sigmoid turn-on
- W/Z: double Gaussian, shape parameters from $W' \rightarrow WZ \rightarrow qqqq$
- Template fit to derive scale factor: SF = 1.07
- Lower efficiency for $n_{
 m trk} <$ 30 selection of 6% in data compared to MC

$n_{\rm trk}$ efficiency measurement

- Background consists of qq, qg and gg
- MC studies: 9.4% qq, 41.7% gg and 48.8% qg
- 36% of background events have quark-initiated leading jet
- Smooth boson tagging efficiencies observed for both quark and gluon jets

Spurious signal - Run-II

- Uncertainties arising from the possibility of the fitting function to fake a signal
- Estimate uncertainties by fitting *m*_{JJ} distribution in validation regions in data and considering sig+bkg fits

- Generate spectrum with 5-parameter function and fit with sig + bkg (2-parameter function)
 - Compare extracted signal to statistical uncertainty of sample
 - Tested different W' masses
- Spectra with different quark/gluon composition
 - Does a different flavour composition create signal in m_{JJ} spectrum
- **③** S + B fit to spectrum from 2-parameter function $\rightarrow N_S/\sigma_S$

Did we miss something with the new tagger?

Run-II tagger

Run-I tagger

Nothing significant observed with neither Run-I nor Run-II tagger

CMS diboson resonance searches - Intro

• Analysis performed in fully hadronic and $\ell \nu q q$ final state

• $\sqrt{s} = 13$ TeV, $\mathcal{L} = 2.6$ fb^{-1}

W/Z identification

- Anti- $k_t R = 0.8$ soft-drop jets
- Mass window + $au_{21} < 0.75$
- $65 < m_W < 85 {
 m GeV}, \, 85 < m_Z < 105 {
 m GeV}$

Event selection

• Define two different purity categories based on the τ_{21} variable

CMS diboson resonance searches

- No significant deviation observed
- Results interpreted with respect to HVT B model

