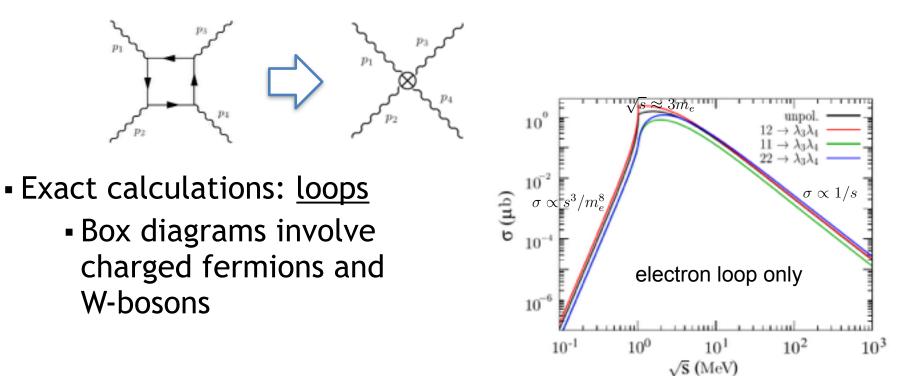
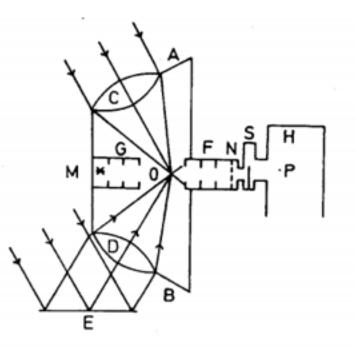
Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC


UW lunch Seminar

6 March 2016

Motivation

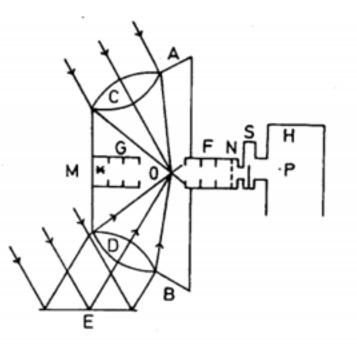

- Euler-Heisenberg (effective) Lagrangian [Z. Phys. 98 (1936) 714]
- Original motivation: calculate the rate for light-by-light (LbyL) scattering
 - Applying it for LbyL corresponds to a tree-level calculations (valid only in low-energy limit i.e. p << m_e):

LbyL scattering: experimental approach

[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

Light-light box experiment

``No light was detected."


``Calculations show that if the photon has a cross section, its area must be less than $3x10^{-20}$ cm²."

(First?) Apparatus for a light-light scattering experiment: The two lenses C and D focus sun light on the same spot O in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.

LbyL scattering: experimental approach

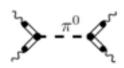
[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

Light-light box experiment

``No light was detected."

``Calculations show that if the photon has a cross section, its area must be less than $3x10^{-20}$ cm²."

(First?) Apparatus for a light-light scattering experiment: The two lenses C and D focus sun light on the same spot O in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.

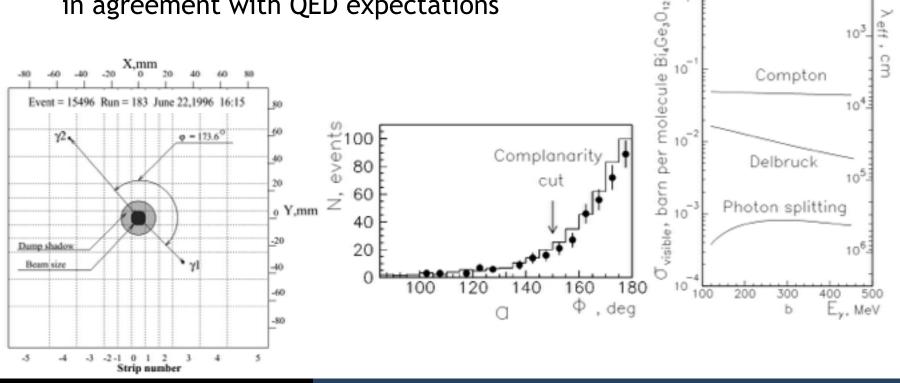

The cross section for scattering of visible light is of the order of **10**⁻⁶⁰ **cm**²

4

Previous experiments

Experimental status prior to the ATLAS result

Elastic LbyL scattering	γγ -> γγ	Not observed
Delbruck scattering	γZ -> γZ	Observed ('53 - '98)
Photon splitting in Z field	γΖ -> γγΖ	Observed (2002)
Vacuum electric/magnetic birefringence	γF -> γF	Not observed
Photon splitting in electric/magnetic field	γF -> γγF	Not observed
Impact on muon (electron) g-2	BI -> I	"Observed"
Hadronic LbyL (direct)	ZZ -> π ⁰ /η/η' -> γγ	Observed ('85 - '88)


Photon splitting

6

- ROKK-1M facility at the VEPP-4M collider
- Tagged photon beam experiment (BGO target)
- Photon energy region: 120-450 MeV
- ~400 candidate events are observed, in agreement with QED expectations

6 Mar 2016

Muon g-2

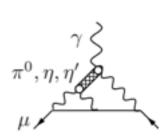
- Significant contribution of LbyL graphs with electron
 - Dominate sixth-order QED contributions
 - "Surprisingly large" factor $a_{\mu}^{(6)}(lbl,e) = \frac{2}{3}\pi^2 \ln \frac{m_{\mu}}{m_e} + \cdots$

- Hadronic LbyL contribution is "relatively" small
 - Dominated by pseudoscalar exchange diagrams

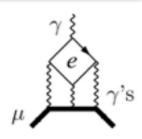
 $a_{\mu}^{\text{LbL;PS}} = (99 \pm 16) \times 10^{-11} \longrightarrow a_{\mu}^{\text{LbL;had}} = (116 \pm 39) \times 10^{-11}$

Data/theory status:

 $a_{\mu}^{(6) \text{ QED}} = 24.050\,509\,64\,(46)\,\left(\frac{\alpha}{\pi}\right)^3$


$$a_{\mu}^{\exp} = 1.16592080(63) \times 10^{-3}$$

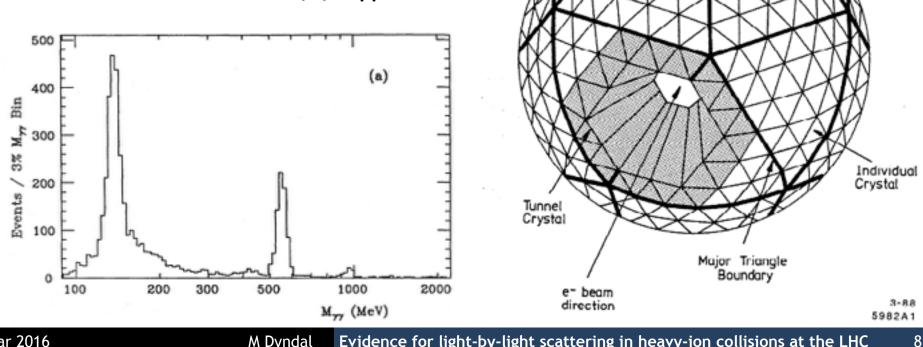
$$a_{\mu}^{\text{the}} = 1.16591790(65) \times 10^{-3}$$


$$\delta a_{\mu}^{\text{NP?}} = a_{\mu}^{\exp} - a_{\mu}^{\text{the}} = (290 \pm 90) \times 10^{-11}$$

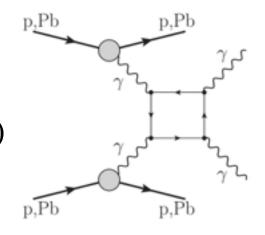
$$\sim 3\sigma \text{ discrepancy}$$

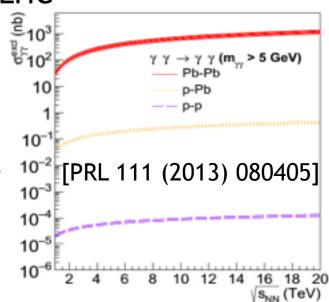
 $a_{\mu}^{(6)}(\text{lbl}, e) \simeq 20.947\,924\,89(16)\,\left(\frac{\alpha}{\pi}\right)^3 = 2.625\,351\,02(2) \times 10^{-7}$ $a_{\mu} = (g_{\mu} - 2)/2$

[Phys. Rept. 477 (2009) 1-110]

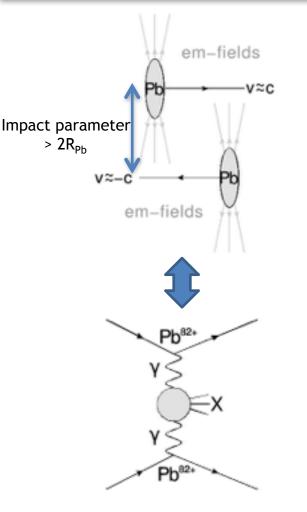


Hadronic LbyL


- Tested directly at e⁺e⁻ colliders at SLAC/DESY (80's)
- The first and only observation of $\gamma\gamma \rightarrow \pi^0 \rightarrow \gamma\gamma$ done with Crystal Ball detector at DORIS II [Phys. Rev. D38 (1988) 1365]
- 0.1 GeV < m < 3 GeV region is probed</p>
- Measurement is used to derive partial widths, $\Gamma_{\pi 0/n/n'}$



LbyL in hadron-hadron collisions


🔹 🐓

- LbyL scattering can be tested in h-h collisions
- Formally, LbyL in h-h == ZZ -> γγ ZZ process
 - However, the initial photons have very small virtualities, eg Q² < 10⁻³ GeV² for Pb+Pb (quasi-real)
 -> Quasi-elastic LbyL scattering
- Recent phenomenological studies/preditions for SM rates in pp/Pb+Pb collisions at the LHC
 - [PRL 111 (2013) 080405]
 - [PRC 93 (2016) no.4, 044907]
- (Relatively) high $m_{\gamma\gamma}$ can be probed
 - -> proposed as a possible channel to study
 - Anomalous gauge couplings
 - Contributions from BSM particles (ALPs etc.)

Theory: ZZ $(\gamma\gamma) \rightarrow ZZ X$ scattering

[Fermi, Nuovo Cim. 2 (1925) 143]

[Weizsacker, Z. Phys. 88 (1934) 612] [Williams, Phys. Rev. 45 (10 1934) 729]

The cross section for ZZ $(\gamma\gamma) \rightarrow ZZ X$ process is calculated using:

(1) Number of equivalent photons (EPA) by integration of relevant EM form factors:

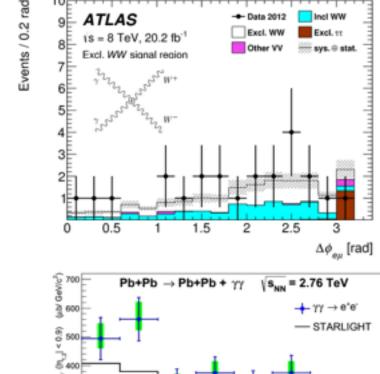
$$\begin{split} n(b,\omega) &= \left. \frac{Z^2 \alpha_{em}}{\pi^2 \omega} \left| \int \mathrm{d}q_\perp q_\perp^2 \frac{F(Q^2)}{Q^2} J_1(bq_\perp) \right|^2 \\ Q^2 &< 1/R^2 \quad \omega_{\max} \approx \gamma/R \end{split}$$

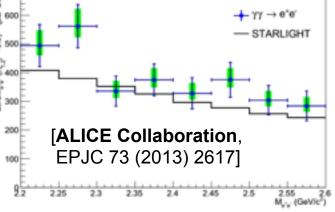
(2) EW $\gamma\gamma \rightarrow X$ (elementary) cross section

$$\sigma_{A_1A_2(\gamma\gamma)\to A_1A_2X}^{\text{EPA}} = \iint d\omega_1 \ d\omega_2 \ n_1(\omega_1) \ n_2(\omega_2) \ \sigma_{\gamma\gamma\to X}(W_{\gamma\gamma})$$

10

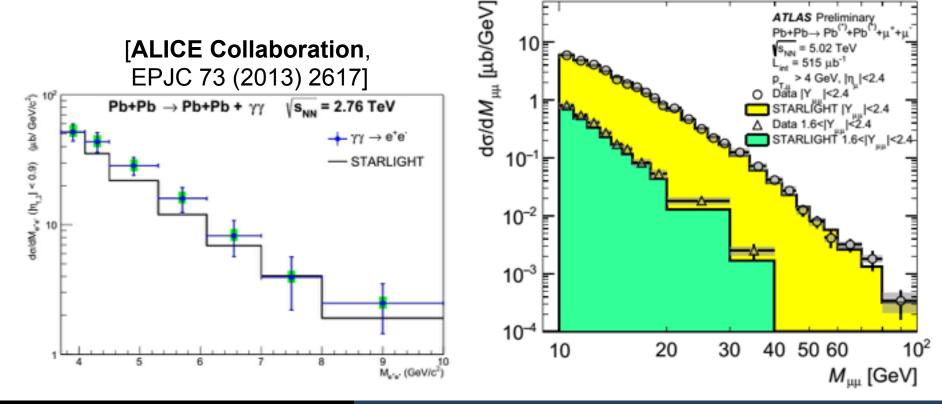
LHC as a photon-photon collider

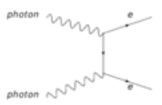

 Many intersting measurements can be done with pp/Pb+Pb beams of quasi-real photons at the LHC [PRD94 (2016) 3, 032011]


pp collisions

- + harder EPA spectrum ($\omega_{max} \sim \text{TeV}$)
- large pile-up (multiple interactions per bunch-crossing)
- + large datasets available, O(10 fb⁻¹)
- hard to trigger on low- p_T objects

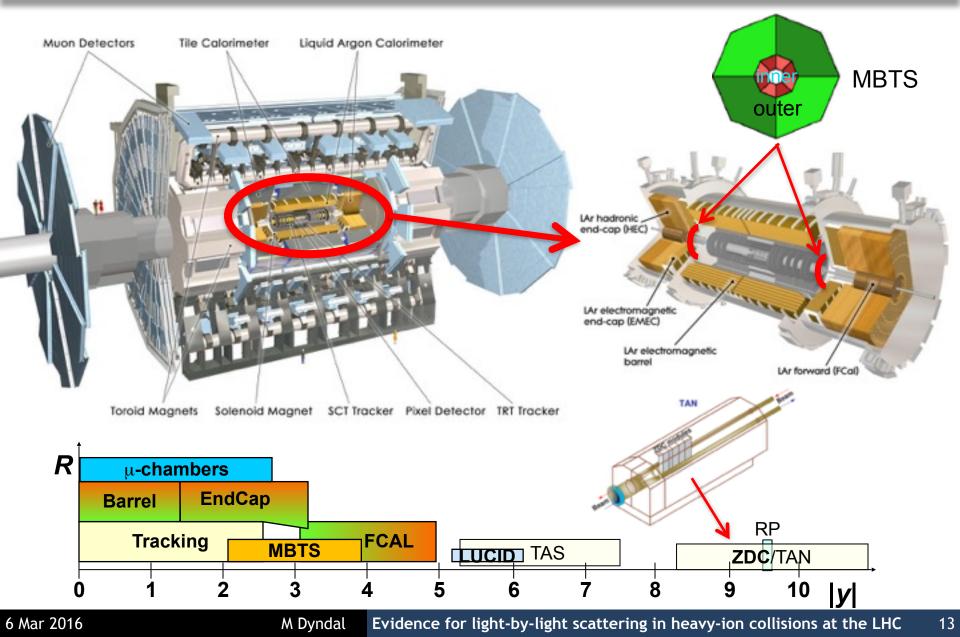
Pb+Pb collisions


- softer EPA spectrum (ω_{max} ~100 GeV)
- + low pile-up (< 1%)
- + AA ($\gamma\gamma$) cross-sections scale as Z⁴
- gluonic cross-sections scale as ~A²
 (lower QCD background expected wrt pp)
- Short LHC Pb+Pb campaigns (cf. pp)

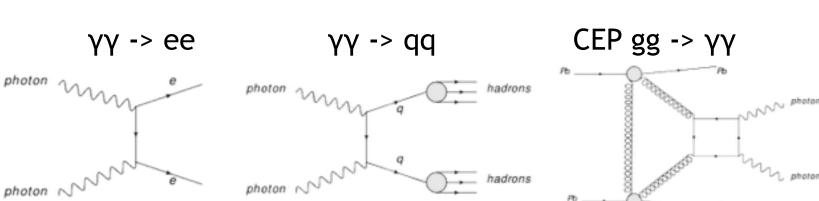


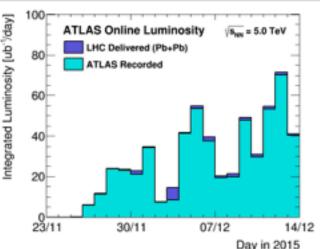
Testing Pb-Pb EPA at the LHC

- $\gamma\gamma$ -> I⁺I⁻ is a good benchmark process
- Studied by both ALICE and ATLAS
- Good agreement with Starlight (EPA + LO elementary cross section) is found
 [ATLAS-CONF-2016-025]



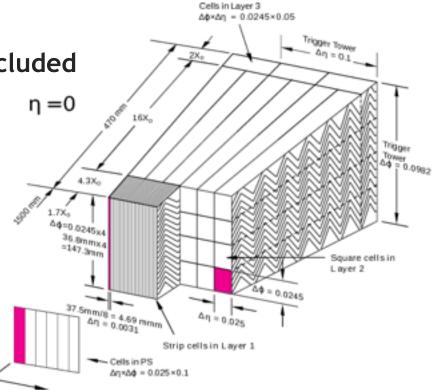
The ATLAS detector





Data and MC samples

- Data: 34 runs from 2015 Pb+Pb campaign are used
- Total integrated luminosity: 0.48 nb⁻¹
 - 6% relative uncertainty
- MC simulated events
 - Signal MC sample to study event characteristics and detector correction factor
 - Several background MC samples are used for processes:



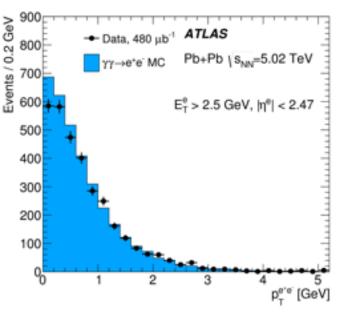
Object definition

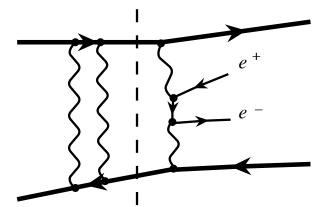
- $\gamma\gamma$ -> $\gamma\gamma$ cross section decreases very rapidly with $m_{\gamma\gamma}$ and/or E_T
 - $\hfill \mbox{Low-} E_T$ photons need to be used
- Photons
 - $E_T > 3$ GeV, $|\eta| < 2.37$, crack excluded photon PID based on three $\eta = 0$ shower-shape variables is used:

E _{ratio}	Ratio of the energy difference associated with the largest and second largest energy deposits to the sum of these energies in the first layer of EM calo
f ₁	Fraction of energy reconstructed in the first layer with respect to the total energy of the cluster
W _{eta2}	Lateral width of the shower in the middle layer

• Charged-particle tracks (vetoed help to reduce background) _ p_T > 100 MeV, $|\eta| < 2.5$

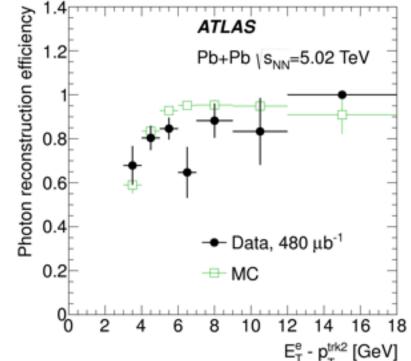
Trigger




Dedicated trigger is used to select γγ -> γγ event candidates

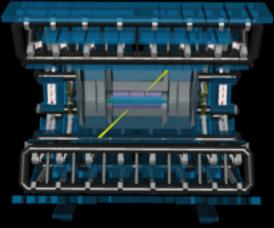
- HLT_gg_upc_L1TE5_VTE200
- Unprescaled in full 2015 data-taking period
- **.** Total E_T in the calorimeter: **5-200 GeV**
- No more than 1 hit in inner MBTS arrays
- Between 0-10 hits in the pixel detector

 Efficiency is estimated using data with γγ -> I⁺I⁻ events passing supporting trigger (ZDC-based)


- HLT_mb_sptrk_ion_L1ZDC_A_C_VTE50
- Aimed to trigger UPC events with mutual ion dissociation

Photon performance cross-checks 🐼 🖇

- $\gamma\gamma \rightarrow I^{+}I^{-}(\gamma)$ events used to cross-check low- E_{T} photon performance
 - This includes: PID/reco efficiency, energy scale/resolution
- Example: γγ -> ee events with hard-bremstrahlung photon are used to extract photon reconstruction efficiency (Tag&Probe)
- Tag selection:
 - ==1 identified electron with $E_T > 5 \text{ GeV}$
 - ==2 tracks, where p_T of track unmatched with electron < 2 GeV
- Probe selection:
 - Check how many times hard-brem photon is reconstructed
 - $E_T(\gamma) \approx (E_T(e) second track p_T)$
- Photon reco efficiency extracted from data in agreement with MC

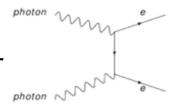


17

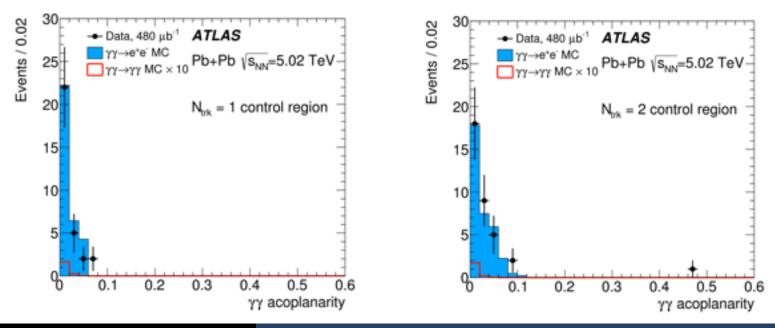
γγ -> γγ event characteristics 🐼

Run: 287924 Event: 106830493 2015-12-12 19:41:56 CEST

Event selection

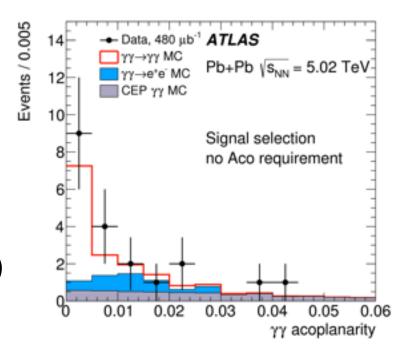


- Signal event characteristics -> set of cuts for background reduction
 - **.** == **2** photons with photon $E_T > 3$ GeV, $m_{\gamma\gamma} > 6$ GeV -> event preselection
 - $N_{trk} = 0$ -> significant reduction of $\gamma\gamma$ -> ee misID events, no impact on signal events
 - **p**_T(γγ) < 2 GeV -> fake photon background reduction (dominated by cosmic-ray muons inducing EM clusters), no impact on signal events
 - Diphoton acoplanarity (Aco = $1-\Delta \phi/\pi$) < 0.01 -> to reduce/control CEP gg -> $\gamma\gamma$ background


Background

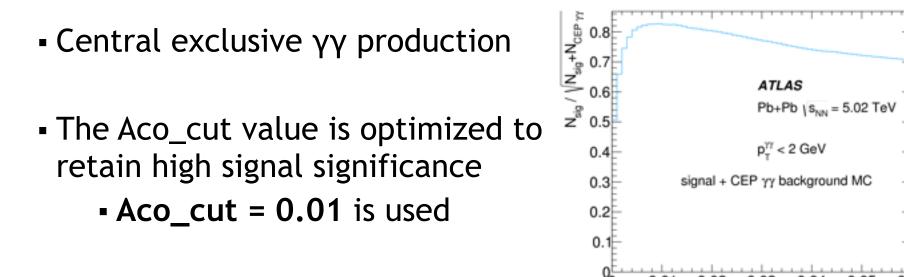
- γγ -> ee misID events
 - Occur when the electron track is not reconstructed or electron emits a hard bremsstrahlung photon

- N_{trk} = 0 cut used to suppress $\gamma\gamma$ -> ee misID events
- ==2 photons together with N_{trk} = 1(2) is a good control region for $\gamma\gamma$ -> ee background


Background

photor

Central exclusive yy production


- Similar exclusive topology
- Relatively flat yy acoplanarity distribution (wrt signal), since the transverse momentum transferred by the photon exchange is much smaller than that due to the colour-singlet state gluons
- CEP gg -> γγ is reducibe with yy acoplanarity cut
- Idea: define Aco < Aco_cut as a signal region and use events with Aco > Aco_cut for CEP gg -> γγ background normalization (due to large theory uncertainties)

Background

γγ acoplanarity cut

• For CEP gg -> $\gamma\gamma$ normalization, the following formula is used: $f_{gg \to \gamma\gamma}^{\text{norm},b} = (N_{\text{data}}(\text{Aco} > b) - N_{\text{sig}}(\text{Aco} > b) - N_{\gamma\gamma \to e^+e^-}(\text{Aco} > b))/N_{gg \to \gamma\gamma}(\text{Aco} > b)$

(b = 0.02 used for the central value; b = 0.01 and b = 0.03 for systematic checks)

• Final estimation: $f_{gg \rightarrow \gamma\gamma}^{\text{norm}, b=0.02} = 0.5 \pm 0.3$

Other background

- Other (negligible) background being studied:
 - Fake photons from hadronic processes: highly suppressed due to MBTS veto and N_{trk} = 0 requirements
 -> studied using Minimum Bias events in data extrapolated to signal region
 - **yy->qq (exclusive hadrons)** -> MC estimation -> considered negligible
 - CEP dimeson production (e.g. gg -> π0 π0 -> 4γ, gg -> ηη -> 4γ etc.)
 -> estimated with MC models to be below 10% of CEP gg -> γγ in the same kinematic region -> considered negligible
 - Other fake photons (mostly induced by cosmic-ray muons) -> estimated to be negligible (0.1 ± 0.1 evts in the signal region) using ABCD method
 - A events passing f_1 cuts on photons, $p_T (\gamma \gamma) < 2 \text{ GeV}$
 - B events failing f_1 cuts on photons, $p_T (\gamma \gamma) < 2 \text{ GeV}$
 - C events passing f_1 cuts on photons, $p_T (\gamma \gamma) > 2 \text{ GeV}$
 - D events failing f_1 cuts on photons, $p_T (\gamma \gamma) > 2 \text{ GeV}$
 - Results are cross-checked wrt other shower-shape variables and additional muon activity in MS

Systematic uncertainties

- Trigger efficiency uncertainty: dominated by γγ -> I⁺I⁻ event statistics passing supporting trigger
- Photon reco/PID efficiency uncertainty: large impact from limited statistics of FSR/hard-bremsstrahlung photon samples
- Photon energy scale: ±5%
- Photon energy resolution: ±15%
- Impact on the C-factor:

Source of uncertainty	Relative uncertainty
Trigger	5%
Photon reco efficiency	12%
Photon PID efficiency	16%
Photon energy scale	7%
Photon energy resolution	11%
Total	24%

Results

Data

105

39

21

13

25

Signal

9.1

8.7

8.5

7.3

1.5

• 13 events observed in data

 $\gamma \gamma \rightarrow e^+e^-$

74

4.0

3.5

1.3

0.3

Selection

CEP $gg \rightarrow \gamma \gamma$

4.7

4.5

4.4

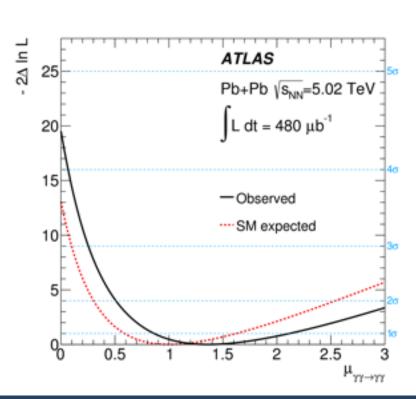
0.9

0.5

Hadronic

fakes

6


6

3

0.3

0.3

- 7.3 signal events and 2.6 \pm 0.7 background events are expected
- Significance is estimated using profile likelihood method (asymptothic formulae)
- Observed significance: 4.4σ
 (3.8σ expected)

Total

background

104

33

12.2

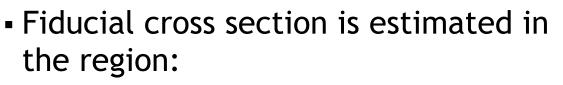
2.6

0.7

Other

fakes

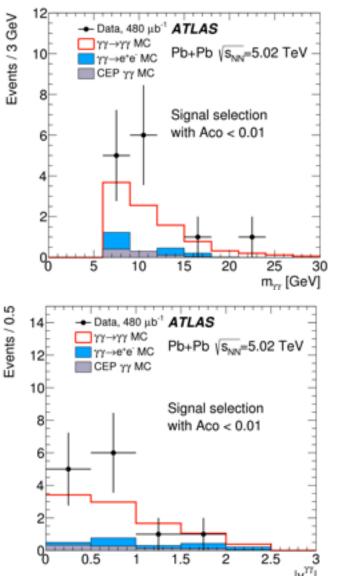
19


19

1.3

0.1

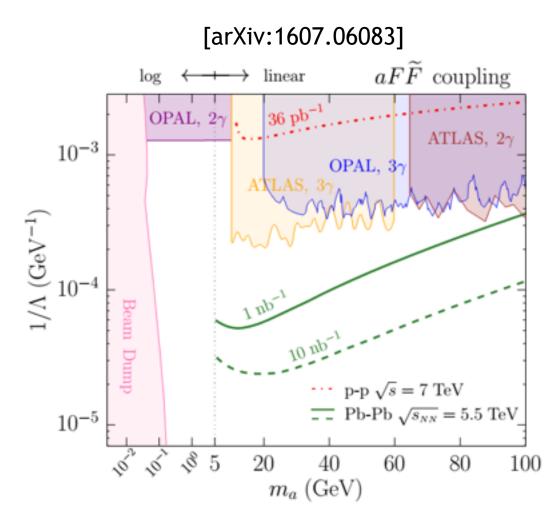
0.1


Results

- $p_T(\gamma) > 3 \text{ GeV}, |\eta(\gamma)| < 2.4$
- $m_{\gamma\gamma}$ > 6 GeV, $p_T(\gamma\gamma)$ < 2 GeV,
- Aco < 0.01

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bkg}}{C \times \int L {\rm d}t}$$

- SM predictions:
 - 45 ± 9 nb
 [PRL 111 (2013) 080405]
 - 49 ± 10 nb [PRC 93 (2016) no.4, 044907]



26

A look forward

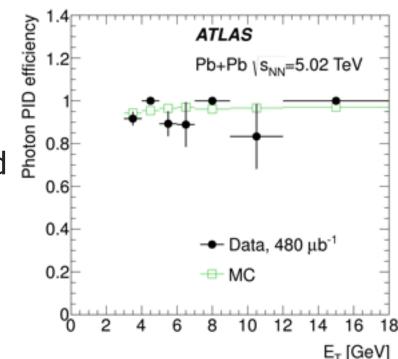
Example: expected sensitivity for ALP searches

Summary

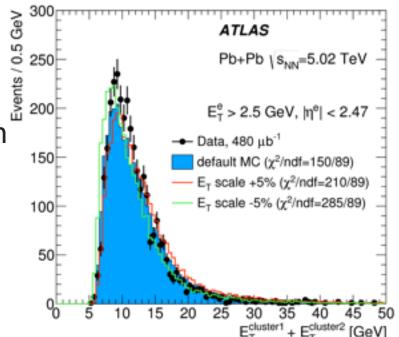
- A search for very rare QED process, light-by-light scattering, is performed in Pb+Pb collisions using 0.48 nb⁻¹ of data recorded by ATLAS in 2015
- 13 events observed in data, where 7.3 signal events and
 2.6 ± 0.7 background events are expected
 - Observed significance over background-only hypothesis: 4.4σ (3.8σ expected)

Fiducial cross section is measured: 70 ± 24 (stat.) ± 17(syst.) nb

 SM predictions: 45 ± 9 nb [PRL 111 (2013) 080405], 49 ± 10 nb [PRC 93 (2016) no.4, 044907]


 More details available at: <u>https://atlas.web.cern.ch/Atlas/</u> <u>GROUPS/PHYSICS/PAPERS/HION-2016-05/</u>

Backup


Photon performance cross-checks

- γγ -> I⁺I⁻ γ (FSR) events are used for data-driven photon
 PID efficiency estimation
- Event selection:
 - Trigger: signal or supporting triggers are used
 - $\scriptstyle \bullet 2$ OS tracks in back-to-back configuration, each with p_T $\,$ > 1 GeV
 - ΔR(tγ) > 0.2 to suppress
 e-bremsstrahlung photons
 - $p_T(tt\gamma) < 1 \text{ GeV}$
- Photon PID efficiency is estimated as a function of photon E_T and compared with MC

Photon performance cross-checks 🛞 🖇

- Photon energy scale/resolution is cross-checked using γγ -> ee event properties
- Idea: measure $E_T(cl1) \pm E_T(cl2)$ distributions in $\gamma\gamma \rightarrow ee$ process
- Initial "theory" smearing very small ($\sigma_{pT(e1) pT(e2)}$ below 0.03 GeV for E_T (cluster) > 3 GeV)
 - $\sigma_{\text{Et(cluster)}} \approx (\sigma_{\text{Et(cluster1)} \text{Et(cluster2)}})/\text{sqrt(2)}$
 - $\sigma_{\text{Et}} / E_{\text{T}} \approx 8\%$ at low- E_{T} (< 10 GeV)
 - Data agrees with γγ -> γγ MC within 15% at low-E_T
- E_T(cluster1) + E_T(cluster2) distribution sensitive to photon energy scale
 - Et scale is conservatively varied by ±5% in MC
 - Simple chi2 test can be used to check the data/MC improvement
 - Data nicely covered by ±5% bands in MC

