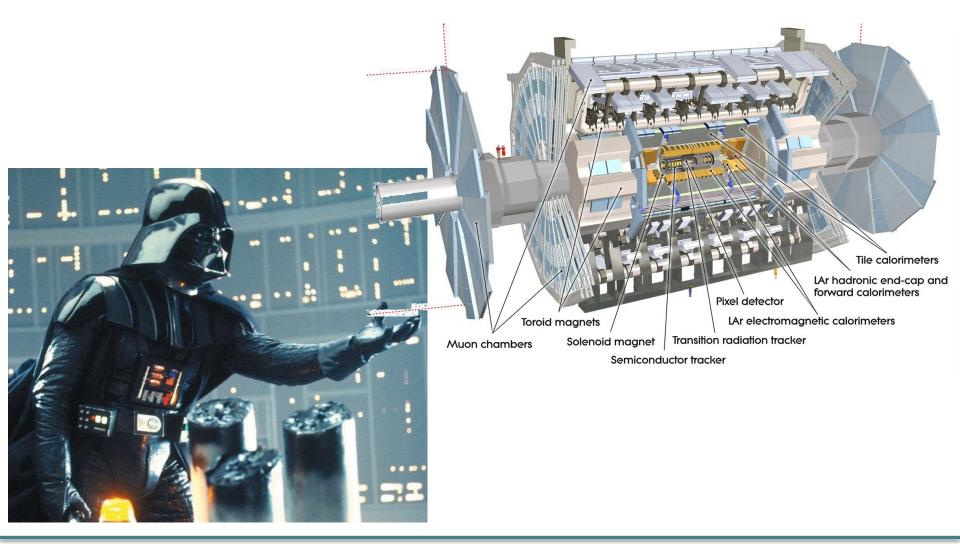
Dark Photon Searches with ATLAS

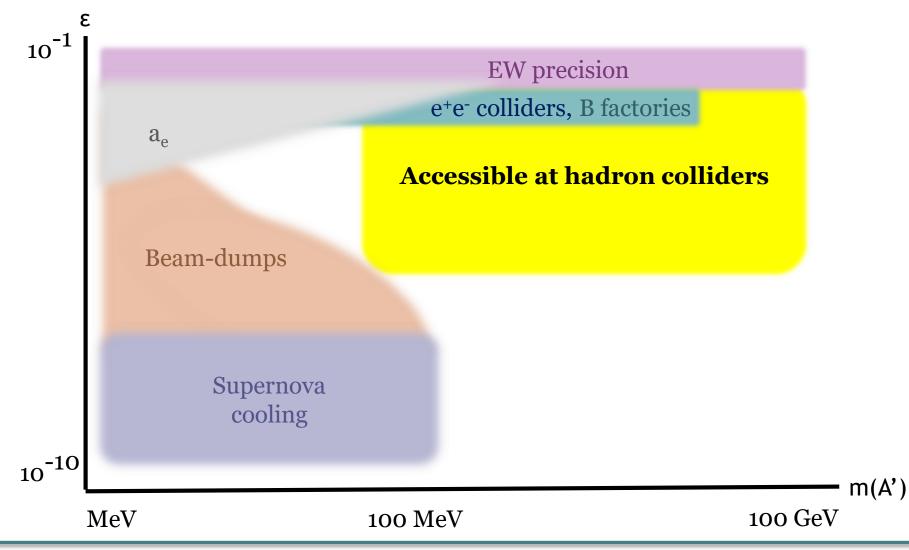

February 2017

Miriam Diamond University of Toronto ATLAS Group

... or, using the Dark Side of the Force

Dark Boson Models

- Vector Portal: Add a U(1)' whose massive "dark" gauge boson (A' / Z_D / γ_d) mixes kinetically with SM photon


$$\mathcal{L} \supset -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{Z}_{D\mu\nu} \hat{Z}_{D}^{\mu\nu} + \frac{1}{2} \frac{\epsilon}{\cos \theta} \hat{Z}_{D\mu\nu} \hat{B}^{\mu\nu} + \frac{1}{2} m_{D,0}^2 \hat{Z}_{D}^{\mu} \hat{Z}_{D\mu}$$
kinetic mixing parameter

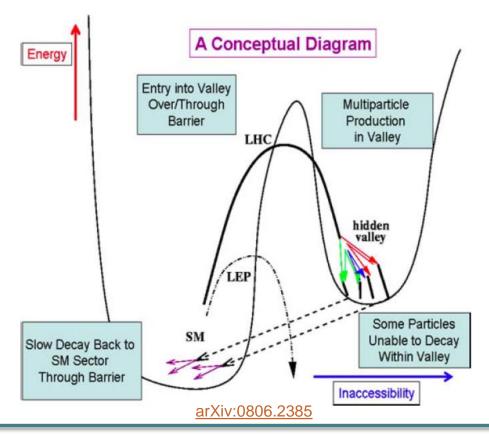
 $\begin{array}{l} My \ convention: \\ \gamma_d \ low-mass \\ Z_D \ higher-mass \\ A' \ agnostic \end{array}$

• + Higgs Portal: Add dark scalar singlet (φ / S) that spontaneously breaks U(1)' and mixes with SM Higgs $V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$

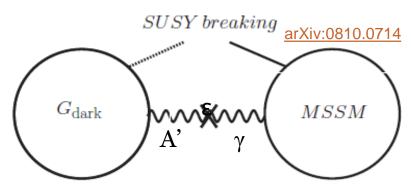
- Hidden Valley: sector of dark particles, interacting amongst themselves, weakly coupled to SM through loops of TeV-scale particles or marginal operators
 - Lowest particle in Valley forced to decay to SM due to mass gap or symmetry
 - "Portal", coupling both to SM and Valley operators, can be A' [+ S]

Dark Boson Models

Dark Photon Searches with ATLAS

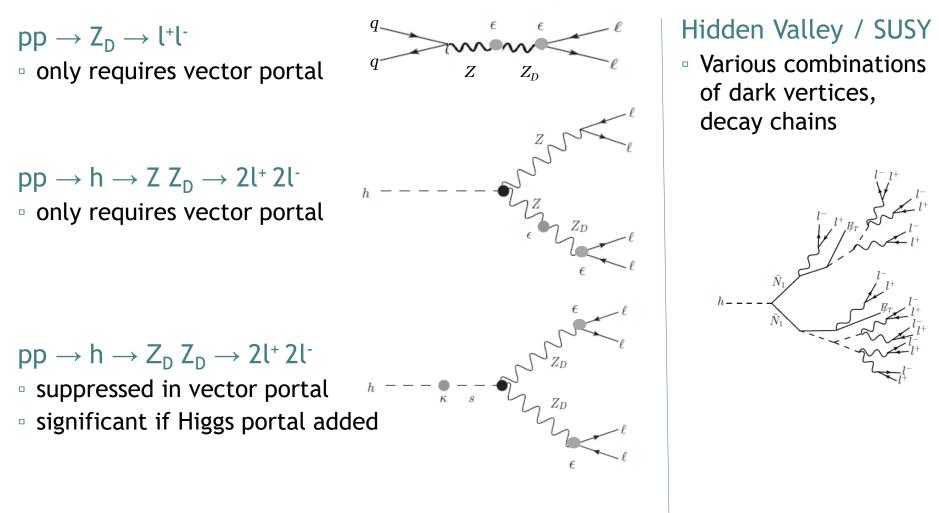

Search Motivations

Look for the Portal

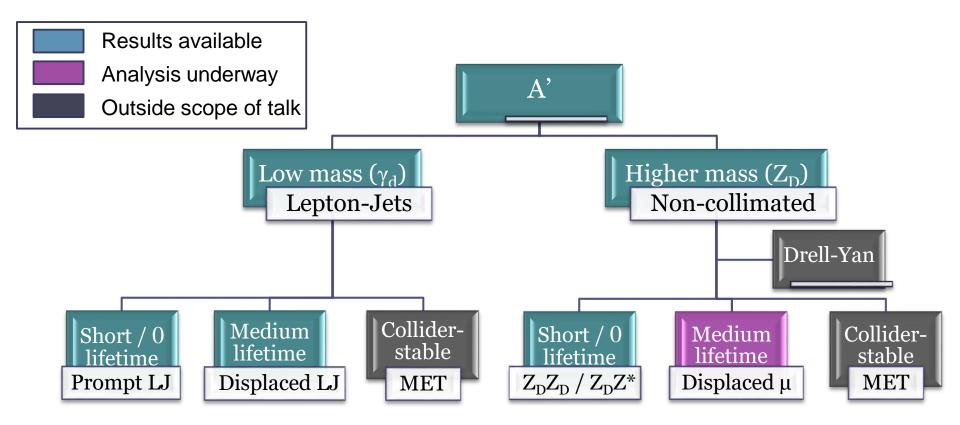


Collider Search Motivations

- Hidden Valley: A' best candidate for collider detection amongst hidden zoo?
 - High A' multiplicity in decay chains?


• A' mediator between dark gauge group and (N)MSSM ?

- A' contribution to $h \rightarrow inv$?
- "Bottom-up" DM models
- Final-state dileptons: promising if A' decays back to SM
 - Assume A' lowest-mass dark state
 - BRs vary with mass
 Lifetime varies with mass, ε


Dark Photon Searches with ATLAS

Collider Search Strategies

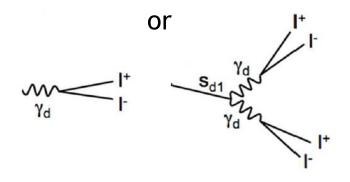
arXiv:1412.0018

Collider Search Strategies

- Lepton-Jet (LJ): collimated jet-like structure containing pair(s) of muons and/or electrons (and/or light hadrons)
- Non-collimated: sufficiently far apart for standard reconstruction

Low-Mass Searches: Challenges

- Low signal rate and no obvious triggers
 - Low lepton-p_T thresholds for sufficient efficiency
 - Need creative triggers to avoid pre-scaling
- Reconstruction challenges for collimated final-state particles


ATLAS Public EXOT-2013-22-Aux

- Range of possible topologies, depending on unknown hidden sector properties
 - Number of constituents per LJ
 - LJ shapes

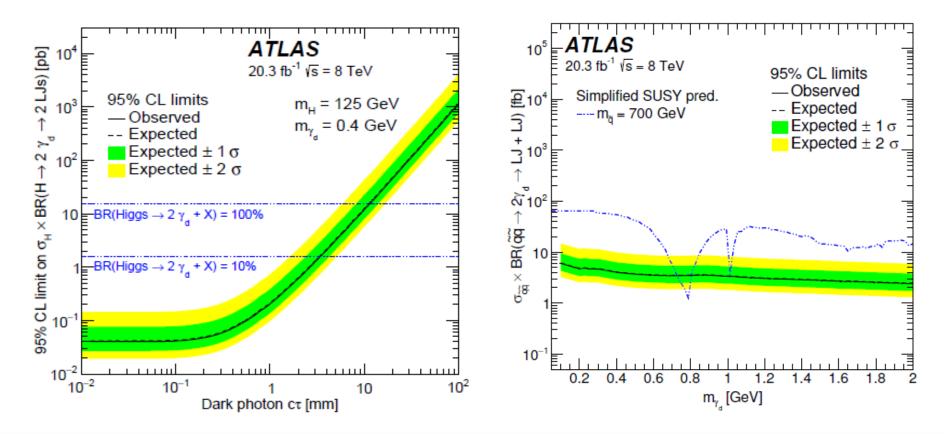
Low-Mass Searches: Strategy

- Categorize LJs by:
 - Particle species
 - Prompt vs displaced
- Key properties:
 - Angular aperture of constituents
 - Isolation (Σp_T of charged tracks within cone)
- LJ-building: cone-based clustering
- Require two LJs in event
 - Minimum $\Delta \phi$ separation

 Use "Lepton-Jet Gun" MC tool to simulate detector response to

- Model-independent trigger & reco efficiency for LJs as function of γ_d {ct , p_T }
- Allows easy recasting

Low-Mass Searches: Strategy


• Benchmark models for limit-setting:

Dark SUSY **FRVZ** HLSP \tilde{q}_i qН $ec{ ilde{\chi}_1^o}$ ggg f_{d_2} $ilde{\chi}^o_{\scriptscriptstyle 1}$ γ_d \tilde{q}_i qHLS \tilde{q}_i qн HLSP 00000 t_{d_2} \tilde{g} \tilde{q}_i q

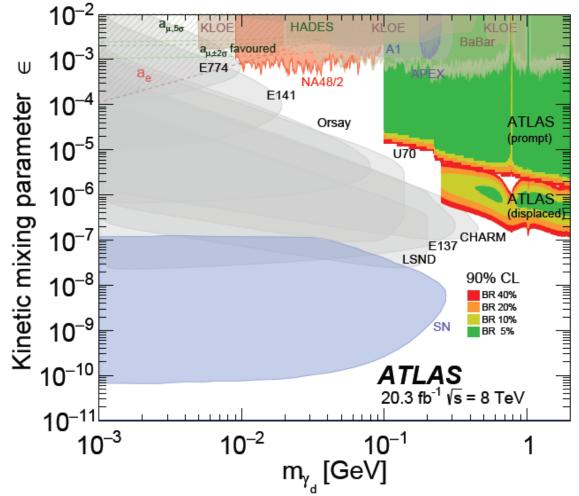
Run 1 Results

Run 1 (20.3 fb⁻¹) JHEP 62, 02 (2016)

• Limits in Benchmark Models:

Dark Photon Searches with ATLAS

Run 2 Results

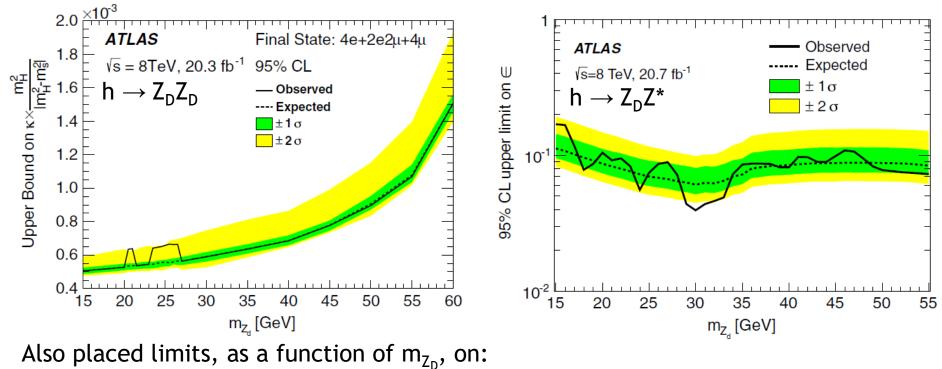

• Limits in Benchmark Models:

95% CL Limit on ∞ BR(H→ $4\gamma_{4}^{+}$ +X) [pb] ATLAS Preliminary 3.6 fb⁻¹ /s = 13 TeV 95% CL Limit on σ×BR(H→ 2₁ +X) [pb] = ATLAS Preliminary FRVZ 4y, model 3.4 fb⁻¹, √s = 13 TeV FRVZ 2γ_d model m_H = 125 GeV m_r = 400 MeV m, - 800 GeV m^d - 400 MeV BR(H→ 2γ,+X) = 100% 10 $\sigma \times BR(H \rightarrow 4\gamma, +X) = 5pb$ Ē BR(H→ 2y,+X) = 10% expected $\pm 2\sigma$ expected $\pm 2\sigma$ observed limit observed limit 10 expected limit expected $\pm 1\sigma$ expected limit expected $\pm 1\sigma$ 10^{2} 10^{2} 10 10 Dark photon ct [mm] Dark photon ct [mm]

Run 1 (20.3 fb⁻¹) JHEP 11, 088 (2014) Run 2 (3.6 fb⁻¹) ATLAS-CONF-2016-042

Low-Mass Searches: Combined Results

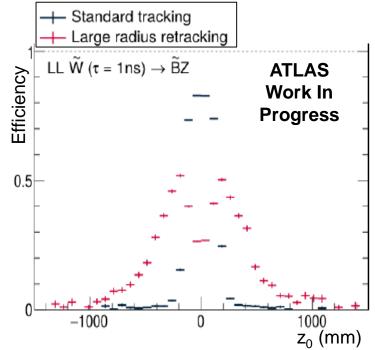
- ATLAS Displaced + Prompt provide complementary coverage in γ_d parameter space
- In regions other experiments unable to reach!
 - ATLAS limits have extra parameter (BR for h → hidden)


Higher-Mass Searches

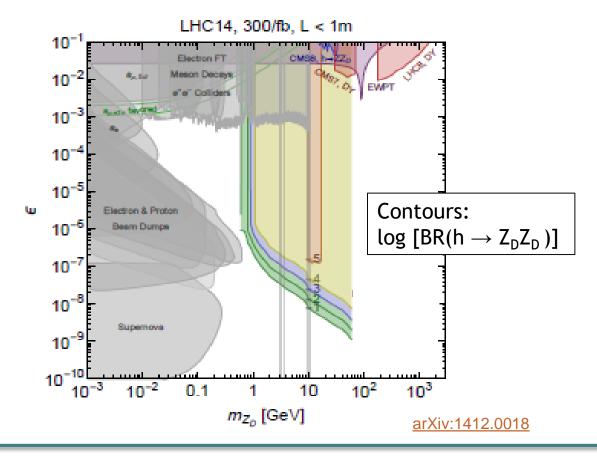
<u>Run 1 (20.3 fb⁻¹)</u> <u>PhysRevD **92**, 001 (2015)</u>

- Assume Z_D on-shell, from decay of 125 GeV Higgs \rightarrow use invariant mass
- All same-flavor opposite-sign combinations of 4l final state
 - 4μ , 2μ 2e, 4e channels
- Combination of various triggers
 - Single-electron, single-muon, di-electron, di-muon, electron+muon
- Overlap removal for close-together leptons
- Impact-parameter cuts reject cosmic-ray muons and non-prompt leptons
- $h \rightarrow Z_D Z_D$ Higgs to 2 equal-mass intermediates
- $h \rightarrow Z_D Z^*$ resonance in Z* mass spectrum

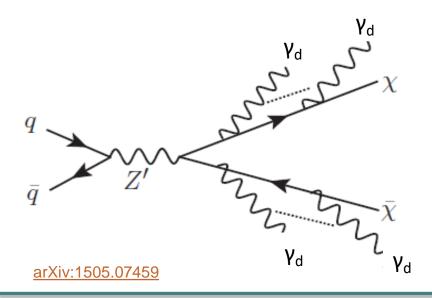
Higher-Mass Searches

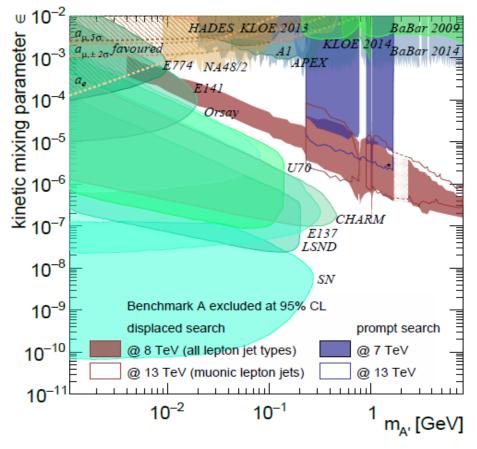

Run 1 Results

- BR(h \rightarrow Z_DZ \rightarrow 4l) / BR(h \rightarrow 4l)
- BR(h \rightarrow Z_DZ \rightarrow 4l) [using SM BR(h \rightarrow Z_DZ^{*})]
- $Z_D Z_D$ signal strength $\frac{\sigma \times BR(h \rightarrow Z_D Z_D \rightarrow 4l)}{[\sigma \times BR(h \rightarrow Z_D Z_D \rightarrow 4l)]_{SM}}$

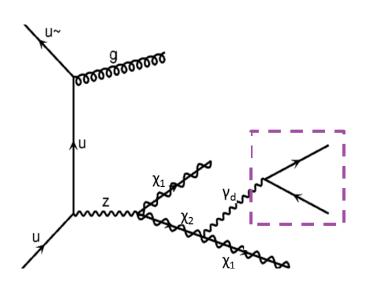

- Specialized reconstruction of displaced Inner Detector tracks: to address gap between Prompt and Displaced analyses, at lifetimes of tens of mm (partway through ID)
- Tricky because standard ATLAS ID tracking algorithms only reconstruct tracks pointing back to IP
- Large Radius Retracking project aims to recover displaced ID tracks:

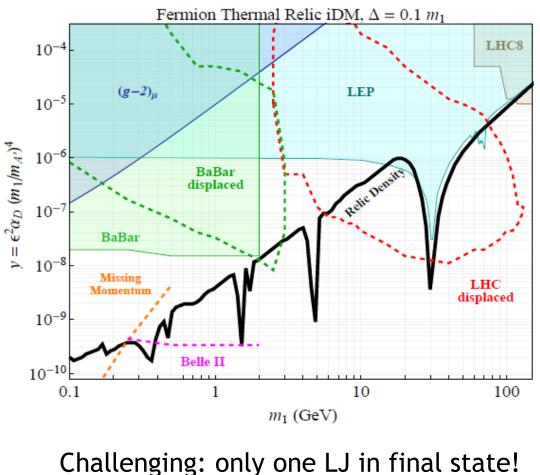
Max	Standard ATLAS Tracking	Large-Radius Retracking
d ₀	10 mm	300 mm
z ₀	250 mm	1.50 m


Lepton-Jets as a Window to the Dark Sector with ATLAS


- New ATLAS "displaced non-collimated muons" analysis planned, extending $Z_D Z_D$ search to lower masses and merging with LJ analyses

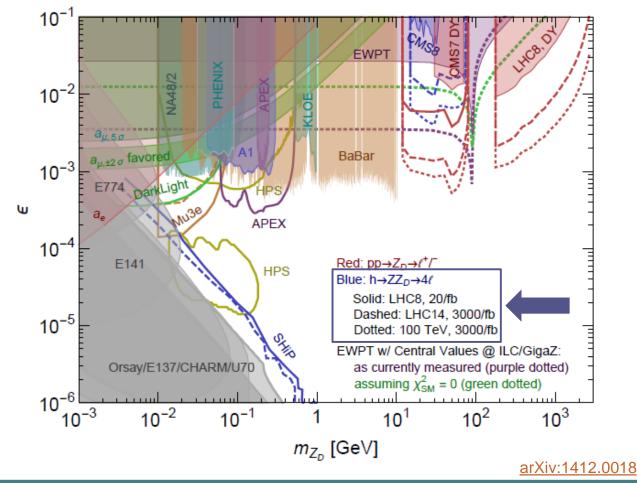
Dark Photon Searches with ATLAS


- Radiating DM: WIMP χ gives off copious γ_d 's due to high α_D
- Phenomenologists used Pythia dark-showering + re-casting of ATLAS 7TeV Prompt and 8TeV Displaced results



Work with phenomenologists for improved limits at 13TeV?

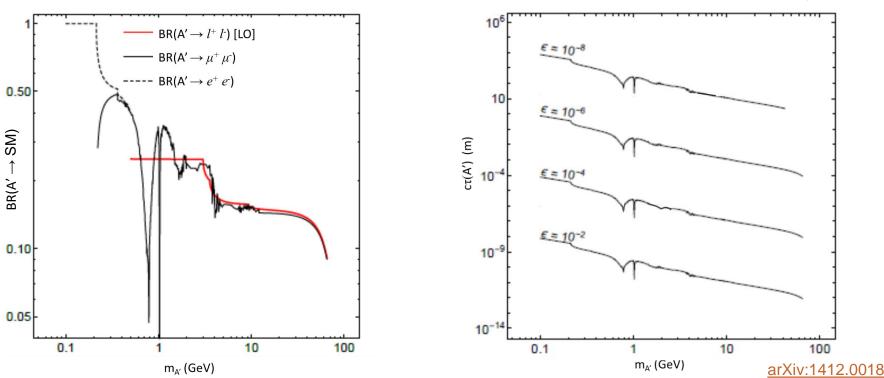
 iDM (Inelastic dark matter): Dirac fermion DM, mass eigenstates χ₁ and χ₂ with dominantly off-diagonal interactions



arXiv:1508.03050

Future Prospects: Higher-Mass

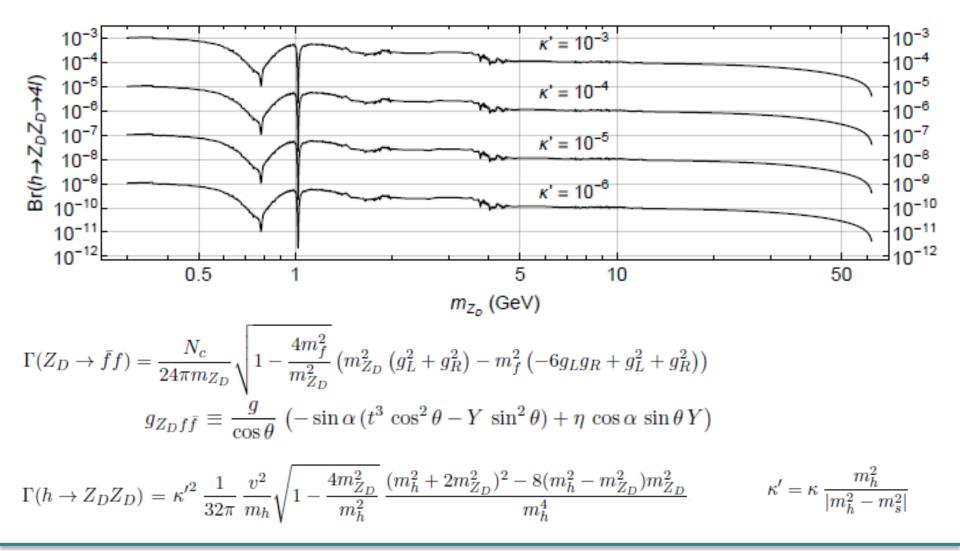
- $h \rightarrow Z_D Z^*$ will soon begin to encroach on open parameter space


Dark Photon Searches with ATLAS

BACKUP

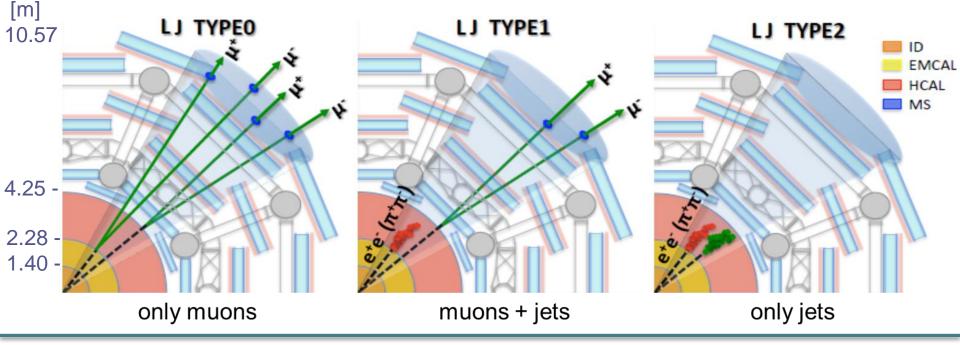
22

Branching Ratios & Lifetimes


- Final-state dilepton signatures: promising search prospects if A' decays back to SM with sizeable BR
 - Assume A' lowest-mass dark state
 - BRs vary with mass

Lifetime varies with mass, ϵ

Dark Photon Searches with ATLAS


Branching Ratios

Targets long-lived γ_d decays

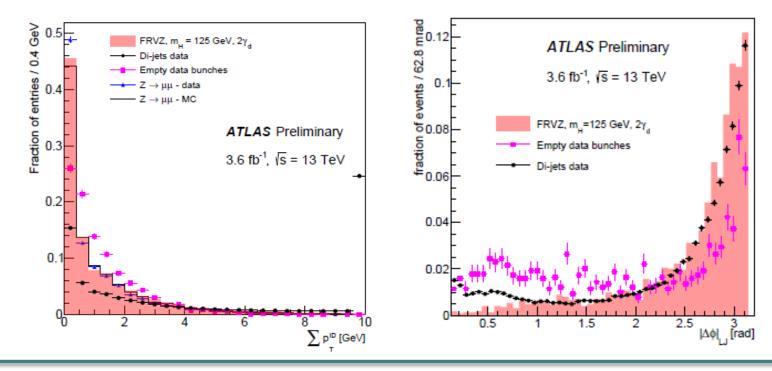
Run 1 (20.3 fb⁻¹) JHEP 11, 088 (2014) Run 2 (3.6 fb⁻¹) ATLAS-CONF-2016-042

- Decay volume: beyond pixel detector, out to muon spectrometer (MS)
- LJ consists of at least one muon and/or electron pair in cone
 - Muon pairs: MS tracks with no corresponding ID tracks
 - Electron pairs: appear as jets in calorimeters

Triggers:

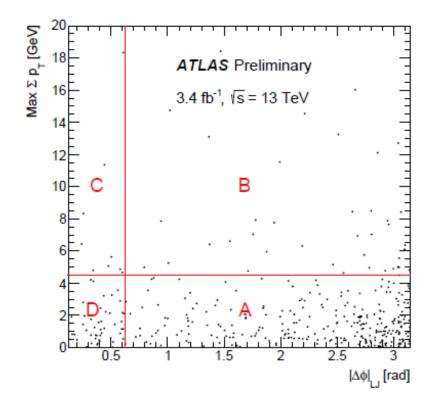
- 3 MS tracks without ID tracks
- 2 close-together MS tracks without ID tracks (NEW IN RUN 2: ~3x gain in trigger efficiency)
- Jet with low fraction of energy deposition in EM calorimeter

Efficiency (in %)					
Trigger	Higgs $\rightarrow 2\gamma_d + X$	Higgs $\rightarrow 2\gamma_d + X$	Higgs $\rightarrow 4\gamma_d + X$	Higgs $\rightarrow 4\gamma_d + X$	
	$m_{\rm H} = 125~{ m GeV}$	$m_{\rm H} = 800 \; { m GeV}$	$m_{\rm H} = 125 \; { m GeV}$	$m_{\rm H} = 800 \; {\rm GeV}$	
Tri-muon MS-only	2.0	2.4	4.9	7.8	
Narrow-Scan	10.6	23.0	8.3	38.4	
CalRatio	0.3	9.7	0.1	7.4	
OR of all	11.9	32.0	11.8	44.8	

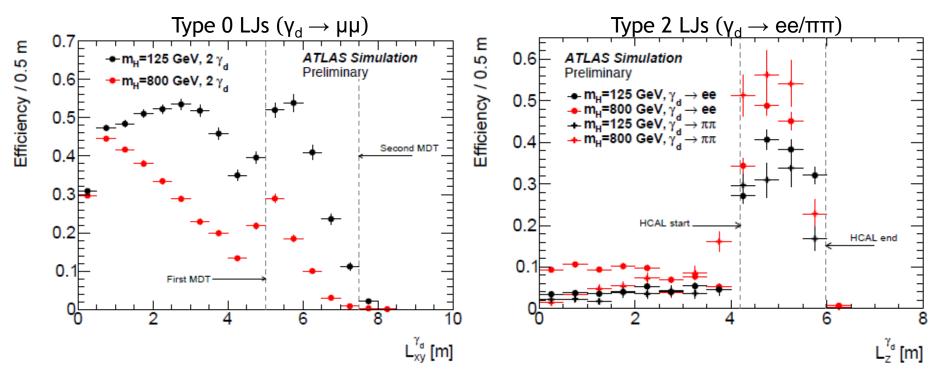

Main backgrounds:

- QCD multijet
- Cosmic-ray muons
- Beam-Induced Backgrounds (BIB) (NEW IN RUN 2: dedicated BIB tagging)

- Requirements on LJ constituents:
 - Muon impact parameters
 - Jet timing & width
 - EMcal/Hcal energy deposition
 - Veto on prompt muons & BIB


- Event-level selection:
 - □ ≥2 LJs
 - ID track isolation (∑p_T of ID tracks within cone of each LJ)
 - $|\Delta \phi|$ between LJs

- Likelihood-based method to minimize
 Cosmics and QCD bg in signal region A, using control regions B, C, D
 - Two uncorrelated variables
 - Simultaneous data-driven bg estimation
 & signal hypothesis test
 - Also yields estimate of residual bg contamination in signal region


• Systematic uncertainties:

Luminosity	2.1%
Trigger: Narrow Scan	6.0%
Trigger: Tri-muon-MS-only	5.8%
Trigger: CalRatio	11.0%
Reconstruction efficiency of single γ_d	15.0%
Effect of pile-up on $\Sigma p_{\mathrm{T}}^{\mathrm{ID}}$	5.1%
Reconstruction of the $p_{\rm T}$ of the $\gamma_{\rm d}$	10.0%

Run 2 Results

- Efficiency x Acceptance (also available in recasting-friendly table form)
 - m_H = 800 GeV: BSM extra Higgs at start of decay chain?

Run 2 Results

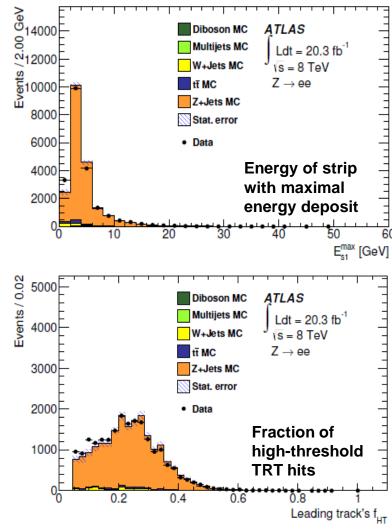
• (Fairly) Model-Independent:

Category	Observed events	Expected background		
All channels	285	231 ± 12 (stat) ± 62 (syst)		
Type2–Type2 excluded	46	31.8 ± 3.8 (stat) ± 8.6 (syst)		
Type2–Type2 only	239	$241 \pm 41(\text{stat}) \pm 65(\text{syst})$		

- Type2: Electron/pion LJs (higher backgrounds than muon LJs)
- No signal seen above expected background, so set limits in Benchmark Models:

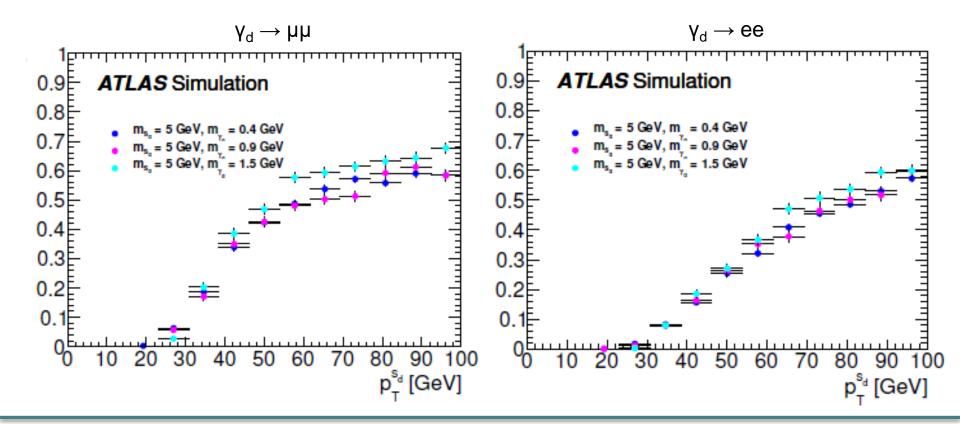
FRVZ model	$m_{\rm H}~({\rm GeV})$	Excluded $c\tau$ [mm]	
Higgs $\rightarrow 2\gamma_d + X$	125	$2.2 \le \mathrm{c}\tau \le 111.3$	
Higgs $\rightarrow 4\gamma_d + X$	800	$3.8 \le c\tau \le 163.0$	
Higgs $\rightarrow 2\gamma_d + X$	125	$0.6 \le c\tau \le 63$	
Higgs $\rightarrow 4\gamma_d + X$	800	$0.8 \le c\tau \le 186$	

Triggers: single-electron, di-EM, single-muon, di-muon


Main backgrounds: QCD multijet

More problematic than in Displaced case

LJ constituents selection:


- Calorimeter isolation
- Jet EM fraction
- EM Calorimeter hit properties and hadronic leakage
- Transition Radiation Tracker hit properties

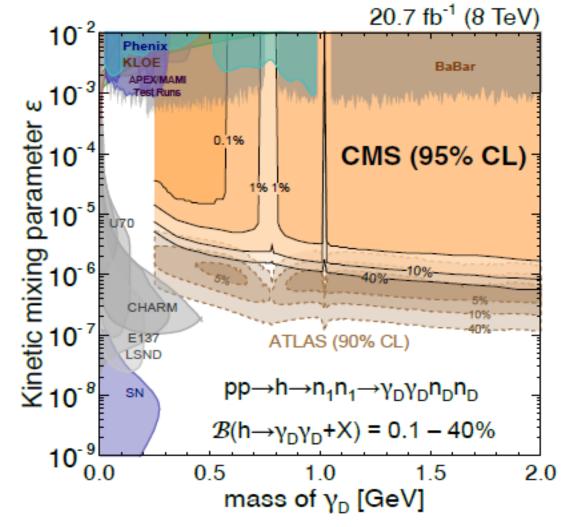
Run 1 (20.3 fb⁻¹) JHEP 62, 02 (2016)

Run 1 Results

• Efficiency x Acceptance (also available in recasting-friendly table form):

Run 1 Results

• (Fairly) Model-Independent:


Channel	Background (total)	Observed events in data
eLJ-eLJ	4.4 ± 1.3	6
muLJ-muLJ	4.4 ± 1.1	4
eLJ-muLJ	7.1 ± 1.4	2
eLJ-emuLJ	7.8 ± 2.0	5
muLJ-emuLJ	20.3 ± 4.5	14
emuLJ-emuLJ	1.9 ± 0.9	0

• No signal seen above expected background, so set limits in Benchmarks:

SUSY (m _q = 700 GeV)		+ X vents	· · ·	′ _d γ _d) + X ents	FRVZ (m _h = 125GeV)		+ X ents		′ _d γ _d) + X ents
$(m_{\gamma d} = 0.4 \text{ GeV})$	Obs.	Exp.	Obs.	Exp.	$(m_{\gamma d} = 0.4 \text{ GeV})$	Obs.	Exp.	Obs.	Exp.
eLJ-eLJ	8.4	6.6	9.0	7.1	eLJ-eLJ	8.5	6.7	8.5	6.7
muLJ-muLJ	5.9	6.5	6.3	6.9	muLJ-muLJ	5.9	6.5	6.5	7.0
eLJ-muLJ	3.9	8.0	4.1	8.6	eLJ-muLJ	3.9	8.1	4.5	9.2
eLJ-emuLJ			7.3	11.7	eLJ-emuLJ			5.9	9.7
muLJ-emuLJ			8.8	16.5	muLJ-emuLJ			11.5	20.8
emuLJ-emuLJ			2.9	5.1	emuLJ-emuLJ			3.9	6.1

Low-Mass Searches: Combined Results

- ATLAS Displaced + CMS provide complementary coverage in γ_d parameter space
- In regions other experiments unable to reach!
 - ATLAS & CMS limits have extra parameter (BR for $h \rightarrow$ hidden)

arXiv:1506.00424

Low-Mass Searches: Muonic LJs (CMS)

Targets γ_d decays within the pixel detector, into muon LJs only

- Trigger: dimuon, p_T > 17 GeV (leading), p_T > 8 GeV (subleading)
- Selection criteria:

Requirement	Description
4 offline muon candidates	Particle Flow algorithm
Muon p_T , $ \eta $	$p_{\rm T} > 8 {\rm GeV}, \eta < 2.4$
High-energy muon	At least one muon with p_{T} > 17 GeV, $ \eta $ < 0.9
Dimuon pair	Two oppositely-charged pairs
Dimuon invariant mass	$m(\mu+\mu-) < 5 \text{ GeV}$
Dimuon common vertex	$P_v(\mu+\mu-) > 1\%$ or $\Delta R(\mu+\mu-) < 0.01$
Dimuon fiducial	≥1 hit in first layer of pixel barrel or endcaps
Dimuon isolation	$I_{sum} < 2 \text{ GeV}$
Dimuons from same interaction	$ z_{1\mu\mu} - z_{2\mu\mu} < 1 \mathrm{mm}$

Low-Mass Searches: Muonic LJs (CMS)

Run 1 Results

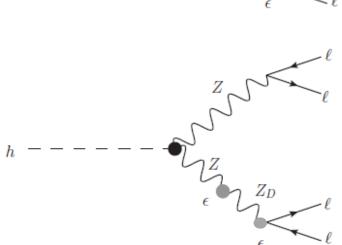
(Fairly) Model-Independent 95% CL:

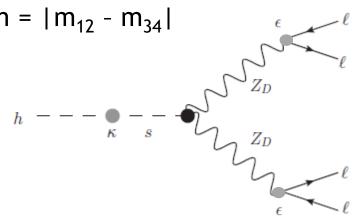
$$\sigma(\text{pp} \rightarrow 2\text{a} + X) \mathcal{B}^2(\text{a} \rightarrow 2\mu) \alpha_{\text{gen}} \leq 0.24 + 0.09 \exp\left(-\frac{(m_{\mu\mu} - 0.32)^2}{2 \times 0.03^2}\right)$$

$$= \tilde{N}(m_{\mu\mu}) / (\mathcal{L}\bar{r})$$

m_{γ_D} [GeV]		0.25	
$c\tau_{\gamma_{\rm D}}$ [mm]	0	0.5	2
$\epsilon_{\rm sim}$ [%]	8.85 ± 0.12	1.76 ± 0.05	0.23 ± 0.03
α _{gen} [%]	14.32 ± 0.14	2.7 ± 0.06	0.31 ± 0.03
$\epsilon_{\rm sim}/\alpha_{\rm gen}$	0.62 ± 0.01	0.65 ± 0.02	0.74 ± 0.13
m_{γ_D} [GeV]		1.0	
$c\tau_{\gamma_{\rm D}} [{\rm mm}]$	0	0.5	2
$\epsilon_{ m sim}$ [%]	6.13 ± 0.23	4.73 ± 0.07	1.15 ± 0.04
α _{gen} [%]	8.89 ± 0.28	6.98 ± 0.09	1.68 ± 0.05
$\epsilon_{\rm sim}/\alpha_{\rm gen}$	0.69 ± 0.03	0.68 ± 0.01	0.68 ± 0.03
	m_{n_1}	= 10 GeV, n	$n_{n_D} = 1 \text{GeV}$

$$\label{eq:alpha} \begin{split} \alpha &= \text{kinematic \& geometrical} \\ & \text{acceptance} \\ \epsilon &= \text{selection efficiency} \\ r &= \epsilon_{data} \ / \ \alpha_{gen} \end{split}$$

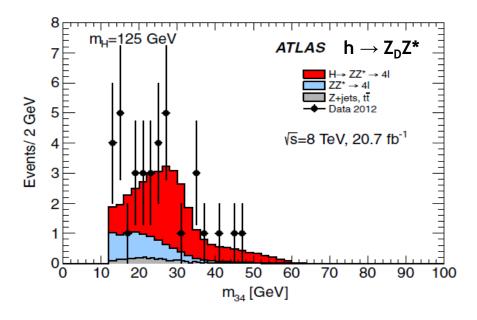

Higher-Mass Searches

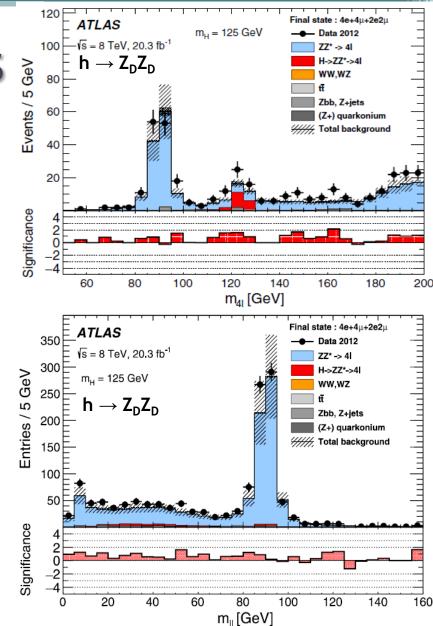

$h \to Z_D Z_D$:

- Lepton quadruplet selected by minimizing $\Delta m = |m_{12} m_{34}|$
- Sensitivity to κ, ε
- Main backgrounds: ZZ*
- Invariant mass cuts:
 - m_{4l} , |m_{pair1} m_z|
 - m_{pair2} within δm of hypothesized m_{Z_D}

$h \to Z_D Z^{\boldsymbol{*}}$:

- For Z* mass spectrum, use opposite-sign same-flavor l pair closest to m_z
- Sensitivity to ε
- Main backgrounds: ZZ*, Z+jets, tt
- Invariant mass cuts: m_{4l} , m₁₂ , m₃₄





Higher-Mass Searches

Run 1

Invariant mass distributions for • data and expected backgrounds:

