An introduction to POWHEG

Gionata Luisoni

gionata.luisoni@cern.ch

CERN

27.03.2017

Important references:

hep-ph/0409146, arXiv:0709.2092, arXiv:1002.2581

CREDITS: Thanks to E.Re and C.Oleari for a lot of the material appearing in the slides

27/03/2017 - Gionata Luisoni

Outline

- Brief motivation: the quest of precision
- Monte Carlo (MC) event generators
- Parton shower vs fixed order calculations
- How to merge NLO+PS: the POWHEG master formula
- Phenomenological impact
- Conclusions and outlook

Motivation: the quest for precision

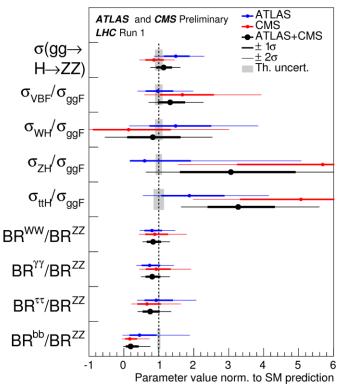
New Physics at the LHC?

 After Higgs boson discovery focus on its properties and on hints for BSM physics

> So far no sign of new physics at the TeV scale from direct searches

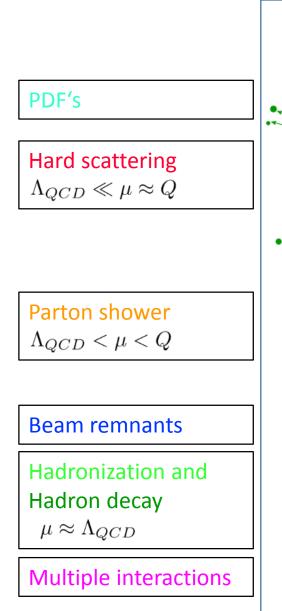
- Possible hits for new physics could come from very precise measurements e.g. in the Higgs sector
 - Very accurate predictions are needed, both
 - \succ in shape
 - in normalization

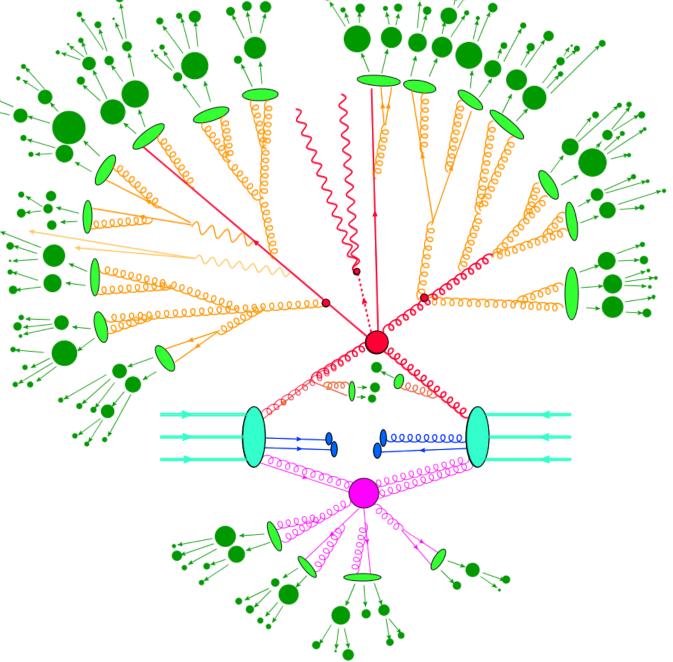
Precise description of scattering process at all stages!

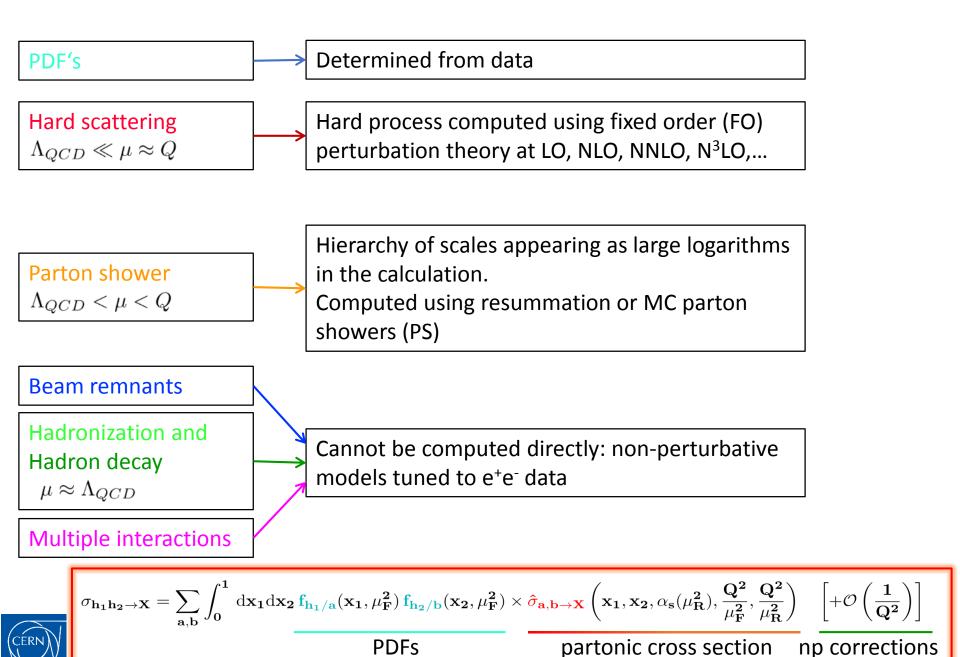


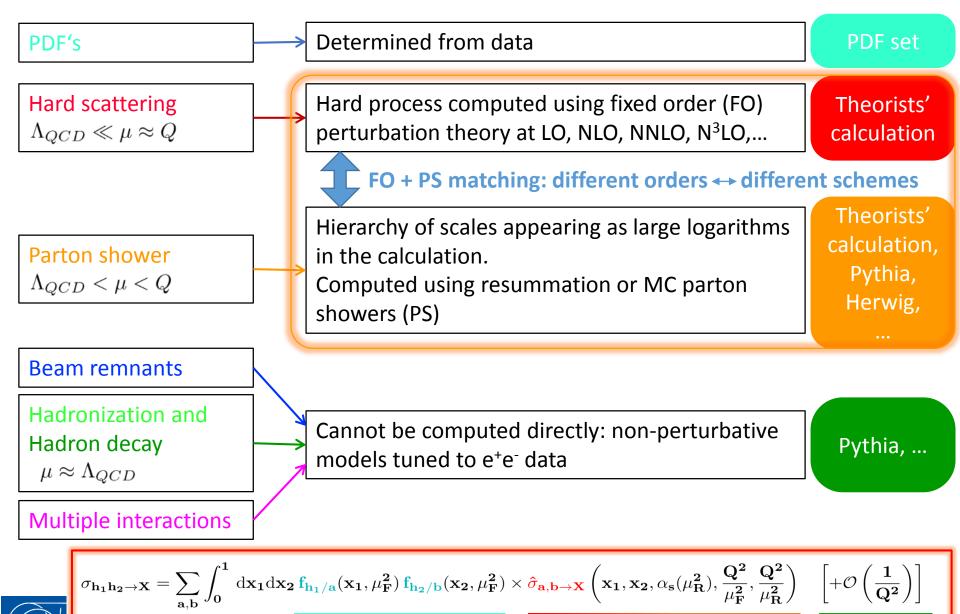
Monte Carlo Event Generators

What they are and what they do









PDFs

partonic cross section np corrections

Monte Carlo Event Generators try to give the best full description of a collision combining theoretical predictions for the different stages of an event and providing a fully exclusive final state in terms of hadrons and leptons which is as close as possible to what is measured in a real experiment

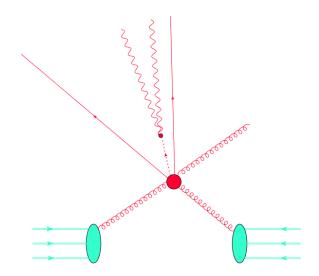
30 NU_E 12 1 28 23 0 0 64.30 25.12-1194.4 1196.4 0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 31 E+ -11 1 29 23 0 0 -22.36 6.19 -234.2 235.4 0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 230 PI0 111 1 155 24 0 0 0.31 0.38 0.9 1.0 0.13 4.209E-11 6.148E-11-3.341E-11 5.192E-10	*T
230 PIO 111 1 155 24 0 0 0.31 0.38 0.9 1.0 0.13 4.209E-11 6.148E-11-3.341E-11 5.192E-10	00
	00
	10
231 RHO+ 213 197 155 24 317 318 -0.06 0.07 0.1 0.8 0.77 4.183E-11 6.130E-11-3.365E-11 5.189E-10	10
232 P 2212 1 156 24 0 0 0.40 0.78 1.0 1.6 0.94 4.156E-11 6.029E-11-4.205E-11 5.250E-10	10
233 NBAR -2112 1 156 24 0 0 -0.13 -0.35 -0.9 1.3 0.94 4.168E-11 6.021E-11-4.217E-11 5.249E-10	10
234 PI211 1 157 9 0 0 0.14 0.34 286.9 286.9 0.14 4.660E-13 8.237E-12 1.748E-09 1.749E-09	09
235 PI+ 211 1 157 9 0 0 -0.14 -0.34 624.5 624.5 0.14 4.056E-13 8.532E-12 2.462E-09 2.462E-09	09
236 P 2212 1 158 9 0 0 -1.23 -0.26 0.9 1.8 0.94-4.815E-11 1.893E-11 7.520E-12 3.252E-10	10
237 DLTABR2224 197 158 9 319 320 0.94 0.35 1.6 2.2 1.23-4.817E-11 1.900E-11 7.482E-12 3.252E-10	10
238 PI0 111 1 159 9 0 0 0.74 -0.31 -27.9 27.9 0.13-1.889E-10 9.893E-11-2.123E-09 2.157E-09	09
239 RHO0 113 197 159 9 321 322 0.73 -0.88 -19.5 19.5 0.77-1.888E-10 9.859E-11-2.129E-09 2.163E-09	09
240 K+ 321 1 160 9 0 0 0.58 0.02 -11.0 11.0 0.49-1.890E-10 9.873E-11-2.135E-09 2.169E-09	09
241 KL_110323 197 160 9 323 324 1.23 -1.50 -50.2 50.2 1.57-1.890E-10 9.879E-11-2.132E-09 2.166E-09	09
242 K321 1 161 24 0 0 0.01 0.22 1.3 1.4 0.49 4.250E-11 6.333E-11-2.746E-11 5.211E-10	10
243 PI0 111 1 161 24 0 0 0.31 0.38 0.2 0.6 0.13 4.301E-11 6.282E-11-2.751E-11 5.210E-10	10

Can be fed to a detector-simulation software to determine efficiencies

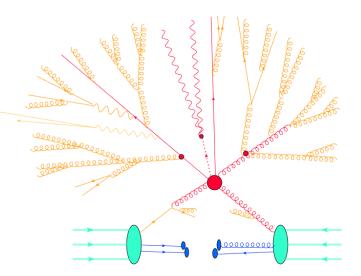
Parton showers and fixed order

Two complementary approach for parton level computations

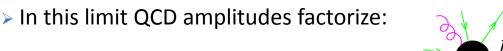
- Describe evolution from hard process at scale Q to low energy (long distance) non-perturbative physics at scale Λ_{QCD}
- Proceeds via successive quark & gluon production
- \succ Start from a low multiplicity process at high Q
- Color-charged partons like to radiate



- Describe evolution from hard process at scale Q to low energy (long distance) non-perturbative physics at scale Λ_{QCD}
- Proceeds via successive quark & gluon production
- \succ Start from a low multiplicity process at high Q
- Color-charged partons like to radiate
- Leading contribution from soft/collinear emissions (propagators become small)



$$\begin{array}{c|c} & & 1 \\ \hline & & \\ & &$$



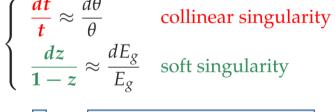
- $d\Phi_{n+1} = d\Phi_n \, d\Phi_r \qquad d\Phi_r \div dt \, dz \, d\varphi$ Factorization of phase space:
- > Factorization of matrix element:

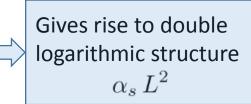
 \mathcal{Z}

$$|M_{n+1}|^2 d\Phi_{n+1} \implies |M_n|^2 d\Phi_n \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\varphi}{2\pi}$$

$$t : (k+l)^2, p_T^2, E^2\theta^2 \dots$$
$$z = k^0 / (k^0 + l^0) : \text{ energy } (\text{ or } p_{\parallel} \text{ or } p^+) \text{ fra}$$
$$P_{q,qg}(z) = C_F \frac{1+z^2}{1-z} : \text{ Altarelli-Parisi splitting}$$

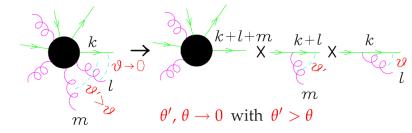
ction of quark function (ignore $z \rightarrow 1$ IR divergence for now)





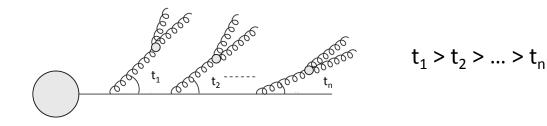
 $\xrightarrow{k+l}$ X -

> For successive emissions iterate this formula:



$$\begin{split} M_{n+1}|^2 d\Phi_{n+1} &\implies |M_{n-1}|^2 d\Phi_{n-1} \times \frac{\alpha_s}{2\pi} \frac{dt'}{t'} P_{q,qg}(z') dz' \frac{d\varphi'}{2\pi} \\ &\times \frac{\alpha_s}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\varphi}{2\pi} \theta(t'-t) \end{split}$$

> Dominant contribution comes from strongly ordered emissions



> Virtual corrections are also taken into account in the same approximation (they have same structure but opposite sign) leading to a Sudakov form factor $\Delta(t_1, t_2)$:

$$\Delta(t_1, t_2) \equiv \exp\left\{-\int_{t_2}^{t_1} \frac{dt}{t} \frac{\alpha_s(t)}{2\pi} \int dz \, P_{i,jk}(z)\right\}$$

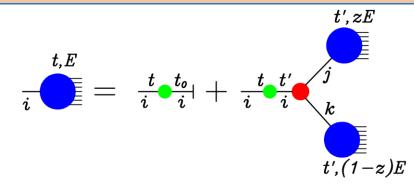
Corresponds to the probability of having no resolved emission between t₁ and t₂

> Therefore, Shower Monte Carlo (SMC) cross section for first emission given by $(d\Phi_r = dt dz d\varphi)$

$$\langle O \rangle = \int d\Phi_n B(\Phi_n) \left\{ O(\Phi_n) \Delta_{t_0} + \int_{t_0} \frac{dt}{t} \, dz \, d\varphi \, O(\Phi_n, \Phi_r) \, \Delta_t \, \frac{\alpha_s}{2\pi} \, P(z) \right\}$$

27/03/2017 - Gionata Luison

Basics on parton showers: final recipe



$$\mathcal{S}_{i}(t,E) = \Delta_{i}(t,t_{0}) \mathbb{1} + \sum_{(jk)} \int_{t_{0}}^{t} \frac{\alpha_{S}(t')}{2\pi} \frac{dt'}{t'} \int dz \int \frac{d\varphi}{2\pi} \Delta_{i}(t,t') P_{i,jk}(z) \mathcal{S}_{j}(t',zE) \mathcal{S}_{k}(t',(1-z)E)$$

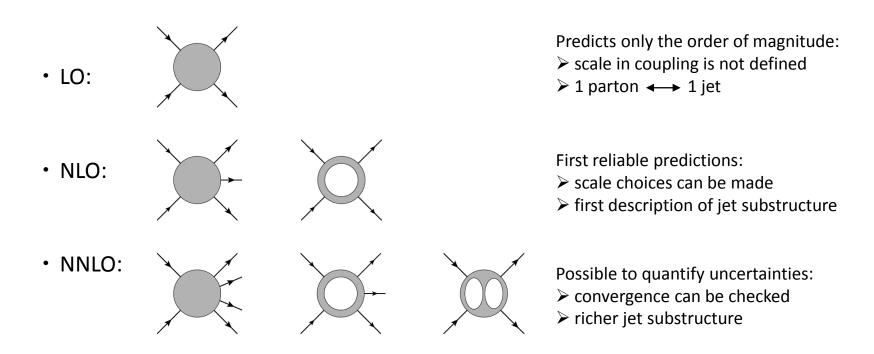
- Consider all Born graphs
- > At each vertex: generate radiation variables and include factor $\frac{dt}{t} dz \frac{\alpha_s(t)}{2\pi} P_{i,jk}(z) \frac{d\varphi}{2\pi}$
- > Include a factor $\Delta_i(t_1, t_2)$ to each internal parton i from hardness t1 to hardness t2
- > Include a factor $\Delta_i(t, t_0)$ on final lines (t_0 is IR cutoff)
- This allows to resum the leading logarithmic contributions to all orders
 - Probabilistic formulation of shower evolution
 - Can change shapes of distributions but not the overall normalization: at the inclusive level the cross section remains unchanged (unitarity of PS)
 - Attaching this to a LO matrix element allows to reach LO+LL accuracy

Fixed order calculations

• Partonic cross section: for hard processes computed as series exp. in the strong coupling $\alpha_s \sim 0.1$

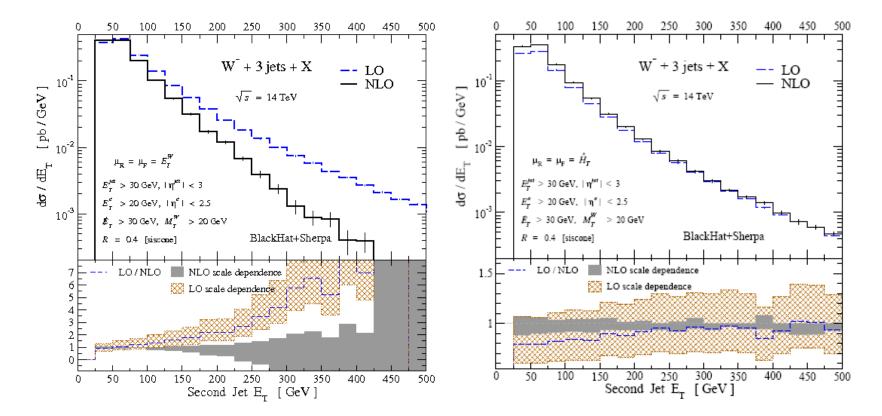
$$\hat{\sigma}_{a,b\to X} = \alpha_s^n \left[\sigma_0 + \frac{\alpha_s \sigma_1}{\alpha_s \sigma_1} + \frac{\alpha_s^2 \sigma_2}{\alpha_s \sigma_2} + \frac{\alpha_s^3 \sigma_3}{\alpha_s \sigma_3} + \mathcal{O}(\alpha_s^4) \right]$$

$$LO \qquad \text{NLO} \qquad \text{NNLO} \qquad \text{N}^3\text{LO}$$



Importance of NLO calculations

 To control the theoretical uncertainties in the computation of LHC processes NLO predictions are needed:

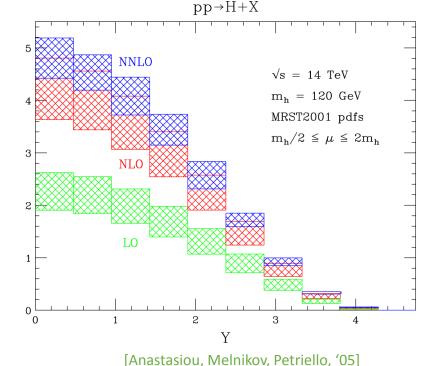


Consequences of a bad (wrong) scale choice!

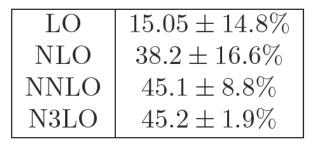
G.Luisoni, November 29th 2012

Sometimes not even NLO is enough

- In some processes NLO corrections are still large: need to compute cross section at even higher accuracy to obtain a precise theoretical prediction
- Canonical example: Higgs boson production



- Huge NLO [O(100%)] and NNLO
 [O(20%)] effects!
- Now known at N³LO:

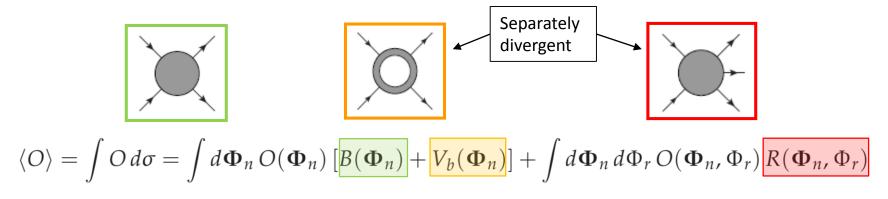


[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger, '15-'16]

 $\sigma \ [pb]$

Structure of a NLO calculation

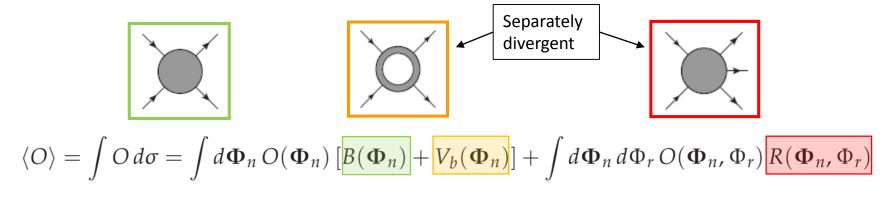
• NLO calculation for an observable O consists of different ingredients:



• [Parametrized (n+1)-body phase space Φ_{n+1} in terms of Born and radiation $\Phi_{n+1} = \{\Phi_n, \Phi_r\}$]

Structure of a NLO calculation

• NLO calculation for an observable O consists of different ingredients:



- [Parametrized (n+1)-body phase space Φ_{n+1} in terms of Born and radiation $\Phi_{n+1} = \{\Phi_n, \Phi_r\}$]
- Divergent parts can be regulated e.g. with a subtraction scheme:

• D

$$\langle O \rangle = \int d\Phi_n O(\Phi_n) \left[B(\Phi_n) + V_b(\Phi_n) + \int d\Phi_r C(\Phi_n, \Phi_r) \right] \\ + \int d\Phi_n d\Phi_r \left[O(\Phi_n, \Phi_r) R(\Phi_n, \Phi_r) - O(\Phi_n) C(\Phi_n, \Phi_r) \right] \\ finite \\ efining: \quad V(\Phi_n) = V_b(\Phi_n) + \int d\Phi_r C(\Phi_n, \Phi_r) \quad \Leftarrow finite \\ \end{cases}$$

 $\langle O \rangle = \int d\Phi_n O(\Phi_n) \left[B(\Phi_n) + V(\Phi_n) \right] + \int d\Phi_n d\Phi_r \left[O(\Phi_n, \Phi_r) R(\Phi_n, \Phi_r) - O(\Phi_n) C(\Phi_n, \Phi_r) \right]$

PS vs NLO: pro and cons

NLO

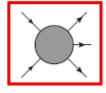
- ✓ Normalization accurate at NLO
- ✓ reduced scale uncertainties
- \checkmark Accurate shapes at high p_T
- × Limited multiplicity
- × Fails on resummation regions

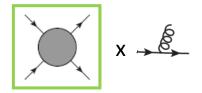
PS

- ✓ Sudakov suppression at small p_T
- ✓ Realistic & flexible (hadron level)
- Limited precision (LO uncertainty)
- Bad description at high pT

Two approaches are very complementary: ideal to merge them trying to keep the good features of both!

<u>PROBLEM</u>: avoid double counting! First extra emission is accounted for in both..





Several ways exist: MC@NLO [Frixione, Webber 2001], POWHEG [Nason 2004] and more recently also: KrKNLO, Vincia, Geneva

•• NLO+PS: the POWHEG method

NLO+PS combination: SMC accuracy vs NLO

• Let's consider again the SMC cross section for first emission:

$$\langle O \rangle = \int d\Phi_n B(\Phi_n) \left\{ O(\Phi_n) \Delta_{t_0} + \int_{t_0} \frac{dt}{t} dz \, d\varphi \, O(\Phi_n, \Phi_r) \, \Delta_t \, \frac{\alpha_s}{2\pi} \, P(z) \right\}$$
with $\Delta_t = \exp\left[-\int_t \frac{dt'}{t'} \, dz' \, d\varphi' \, \frac{\alpha_s}{2\pi} \, P(z') \right]$

• Expand it in α_s to get NLO_{SMC}:

$$\langle O \rangle = \int d\Phi_n B(\Phi_n) \left\{ O(\Phi_n) + \int_{t_0} \frac{dt}{t} dz d\varphi \left[O(\Phi_n, \Phi_r) - O(\Phi_n) \right] \frac{\alpha_s}{2\pi} P(z) \right\}$$

• This is the inexact NLO implemented in parton showers, as compared to the exact NLO:

$$\langle O \rangle = \int d\Phi_n O(\Phi_n) \left[B(\Phi_n) + V(\Phi_n) \right] + \int d\Phi_n d\Phi_r \left[O(\Phi_n, \Phi_r) R(\Phi_n, \Phi_r) - O(\Phi_n) C(\Phi_n, \Phi_r) \right]$$

How do we reach exact NLO accuracy retaining shower resummation?

NLO+PS combination: towards NLO accuracy

$$\langle O \rangle = \int d\Phi_n O(\Phi_n) \left[B(\Phi_n) + V(\Phi_n) \right] + \int d\Phi_n d\Phi_r \left[O(\Phi_n, \Phi_r) R(\Phi_n, \Phi_r) - O(\Phi_n) C(\Phi_n, \Phi_r) \right] = \int d\Phi_n O(\Phi_n) \left\{ B(\Phi_n) + V(\Phi_n) + \int d\Phi_r \left[R(\Phi_n, \Phi_r) - C(\Phi_n, \Phi_r) \right] \right\} + \int d\Phi_n d\Phi_r R(\Phi_n, \Phi_r) \left[O(\Phi_n, \Phi_r) - O(\Phi_n) \right]$$

Define:
$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_r [R(\Phi_n, \Phi_r) - C(\Phi_n, \Phi_r)]$$

Very similar structure, but upper

one accurate

at NLO

And rewrite this as:

$$\langle O \rangle = \int d\Phi_n O(\Phi_n) \,\overline{B}(\Phi_n) + \int d\Phi_n \, d\Phi_r \, R(\Phi_n, \Phi_r) \big[O(\Phi_n, \Phi_r) - O(\Phi_n) \big]$$

Let's compare it again to the NLO_{SMC} :

$$\langle O \rangle = \int d\Phi_n O(\Phi_n) \, B(\Phi_n) + \int d\Phi_n \, d\Phi_r \, B(\Phi_n) \, \frac{\alpha_s}{2\pi} \, P(z) \, \frac{1}{t} \left[O(\Phi_n, \Phi_r) - O(\Phi_n) \right]$$

27/03/2017 - Gionata Luisoni

NLO+PS combination: POWHEG

In summary: NLO_{SMC} \leftrightarrow NLO : $B(\Phi_n) \leftrightarrow \overline{B}(\Phi_n)$

$$B(\mathbf{\Phi}_n)\frac{\alpha_s}{2\pi}P(z)\frac{1}{t}\leftrightarrow R(\mathbf{\Phi}_n,\mathbf{\Phi}_r)$$

Back to all order: the emission probability in SMC was

$$\langle O \rangle = \int d\Phi_n \, B(\Phi_n) \left\{ O(\Phi_n) \, \Delta_{t_0} + \int_{t_0} d\Phi_r \, O(\Phi_n, \Phi_r) \, \Delta_t \, \frac{\alpha_s}{2\pi} \, P(z) \, \frac{1}{t} \right\}$$

with $\Delta_t = \exp\left[-\int d\Phi'_r \, \frac{\alpha_s}{2\pi} \, P(z') \, \frac{1}{t'} \, \theta(t'-t) \right]$

All order emission probability in POWHEG:

$$\langle O \rangle = \int d\Phi_n \,\overline{B}(\Phi_n) \left\{ O(\Phi_n) \,\Delta_{t_0} + \int d\Phi_r \,O(\Phi_n, \Phi_r) \,\Delta_t \,\frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \right\}$$
$$\Delta_t = \exp\left[-\int d\Phi_r' \,\frac{R(\Phi_n, \Phi_r')}{B(\Phi_n)} \,\theta(t'-t) \right]$$

with $t = k_T(\Phi_n, \Phi_r)$ and $\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_r [R(\Phi_n, \Phi_r) - C(\Phi_n, \Phi_r)]$

CERN 27/03/2017 - Gionata Luisoni

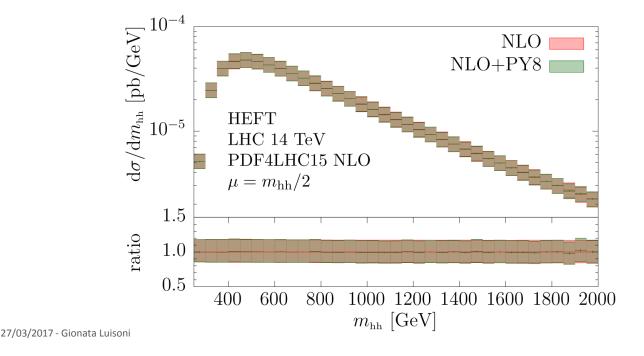
POSITIVE if \overline{B} is positive (i.e. NLO < LO).

Phenomenological impact

- What is the impact of PS corrections to NLO?
- What should stay unchanged, what could/should instead change?
- Consider most recent POWHEG implementation: HH-production

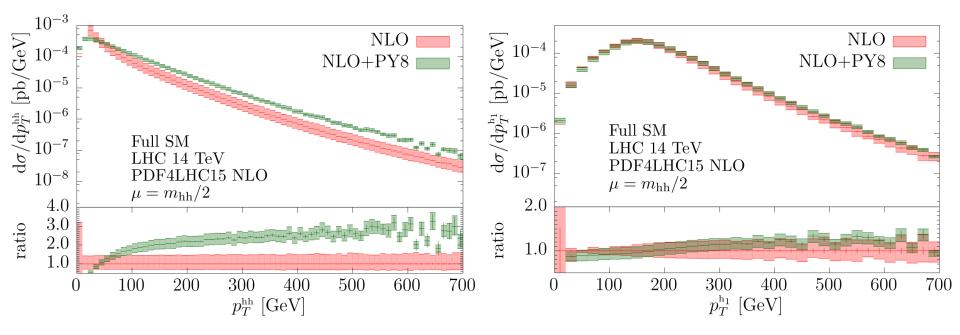
[Heinrich, Jones, Kerner, G.L., Vryonidou to appear Wednesday]

Parton shower cannot affect observables inclusive in the radiation:



Phenomenological impact

Parton shower should instead modify the shape of observable sensitive to QCD (QED) radiation



Conclusions and Outlook

- Fixed order computation and parton showers are two complementary approaches to compute a cross section
 - > Describe two different regimes in a particle scattering
- Best solution is to combine (match) them together!
- POWHEG is one possible matching scheme

 NLO+PS has been extended to merge different multiplicity calculations at NLO and match them to PS:

MINLO MEPS@NLO FxFx UNLOPS

• In meanwhile first schemes exist for NNLO+PS matching: this is the future!

