The Higgs boson - a first of its kind?

Liron Barak

Particle Content

 $SU(3)\times SU(2)\times U(1)$

The Higgs Boson

Theory Inputs

XS and BRs

Needle in the Haystack

Bump Hunter (H-> $\gamma\gamma$)

- Hunting a new short lived particle means looking for a bump in the invariant mass $(m_{inv}^2 = (p_1 + p_2)^2)$ distribution of its decay products.
- The significance of the bump must be high enough to make a statistical fluctuation of the known background highly unlikely.

Bump Hunter (H->γγ)

We have two photons.

Bump Hunter (H->γγ)

* We have two photons in the background too:

What should we do?

 Identify discriminating variables to suppress our backgrounds.

$H \rightarrow \gamma \gamma$

How did we do it?
 https://twiki.cern.ch/twiki/pub/AtlasPublic/
 HiggsPublicResults//Hgg-FixedScale Short2.gif

$H \rightarrow \gamma \gamma$

How did we do it?

The Golden Channel

H->ZZ events in ATLAS

The Golden Channel

How did we do it? https://twiki.cern.ch/
 twiki/pub/AtlasPublic/HiggsPublicResults//
 4l-FixedScale-NoMuProf2.gif

The Golden Channel

How did we do it?

The Glory Day

Beyond the Standard Model

- Problems in the Standard Model (Neutrino mass, dark matter...).
- Fermions come in three families, why only one Higgs family?
- With two Higgs families, five states; Charged Higgs - the smoking gun.

Getting there....

Photon Reconstruction

Photon Reconstruction

Identification

- * Applying cuts over discriminating variables (shower shapes) from the calorimeter layers.
- * Shower shapes: variables that describe the shape of the electromagnetic shower in the calorimeter, and the fraction of energy deposited in the hadronic calorimeter.
- * Cuts are binned in η, and by converted/ unconverted photons and Pileup robust.

Isolation

- * Important for purity determination, background rejection.
- * Both calorimeter and track isolation required.
 - $_*$ Calo isolation $\rightarrow \Sigma E_T$ of energy clusters within ΔR =

$$E_{\rm T}^{\rm iso} < 0.022 E_{\rm T} + 2.45 \,\,{\rm GeV}$$

* Track isolation $\rightarrow \Sigma p_T$ of tracks within $\Delta R = 0.2$:

$$p_{\mathrm{T}}^{\mathrm{iso}} < 0.05 E_{\mathrm{T}}$$

Isolation efficiency: 88 - 97% Isolation uncertainty: $1-2^{\circ}/_{\circ}$

Recap

- * Runi (65-600GeV):
 - * Two regions: low mass (65-110GeV) and high (110-600GeV). Extending the SM Higgs search that was done form 100-160GeV.

Run 2

- * Changes from run1 to run2:
 - * New energy, upgraded detector -> Re-optimization of the cuts (pT, isolation -> BG reduction).
 - * Improving analysis:
 - * Background modelling.
 - * Signal parametrization.

Run 2

- * Changes from run1 to run2:
 - * New energy, upgraded detector -> Re-optimization of the cuts (pT, isolation -> BG reduction).
 - * Improving analysis:
 - * Background modelling.
 - * Signal parametrization.

Run 2

- * Changes from run1 to run2:
 - * New energy, upgraded detector -> Re-optimization of the cuts (pT, isolation -> BG reduction).
 - * Improving analysis:
 - * Background modelling.
 - * Signal parametrization. §

Mass spectrum

Mass spectrum

Exciting Result

$$m_X \sim 750 \text{GeV}, \Gamma_X \sim 45 \text{GeV}(6\%)$$

Local $Z = 3.9\sigma$

Global $Z = 2.1\sigma$

Exciting Result

Preparations for 2016

*Changes from 2015 to 2016:

- * Improved photon reconstruction:
 - * Higher efficiency of the track isolation.
 - * Modified the criteria used to select converted photons to cope with the higher pileup.
 - * Energy calibration have been re-trained to account for the small changes in the conversion reconstruction and improved near $|\eta| = [1.37-1.52]$.
- * The 2015 data and simulated samples, have been reprocessed with the same reconstruction software as used for the 2016 data.

Preparations for 2016

*Changes from 2015 to 2016:

* Eventually no changes in the analysis... although carefully studied.

Final Results

NWA

$$\Gamma_{\rm x}/m_{\rm x}=10\%$$

Largest significance observed for combined dataset 15.4 fb⁻¹

2.4σ local @ 1.6 TeV

Global significance below 10

2.3σ local @ 710 GeV

Global significance below 1σ

Event with highest invariant mass m_{vv} = 2.2 TeV

Leading photon: unconverted, $E_T = 1.1$ TeV, $\eta = 0.45$, $\phi = -0.58$, $E_T^{\text{iso}} = 5.2$ GeV **Subleading photon:** converted, $E_T = 1.1$ TeV, $\eta = 0.41$, $\phi = 2.56$, $E_T^{\text{iso}} = -1.0$ GeV

What's happened?

- * What went wrong?
 - * NOTHING!!!! That is how statistical fluctuation looks like... google it!
- * Could we anticipate it? Were there any hints?
 - * Was it really that significant? Next talk!
 - * Was it really seen by the two independent experiments?
 - * CMS had
 - * 2015 alone: **2.6σ local @ 760 GeV** assuming **narrow kappa** adding the oT data: 2.9**σ** local @ 760 GeV
 - * Combined with 8TeV: 3.4σ local @ 750 GeV
 - * Some hints:
 - * Kinematically the events looked like the side bands.
 - * The best fitted width was quite large (6-8%).
 - * After improving the uncertainty on the resolution -> the NWA significance went down to 2.90 local @ 750 GeV!
 - * Haven't seen in run ATLAS spin 2 analysis.
 - * Wasn't observed in any other channel....dijet, ttbar, ZGamma
 - * Are those really hints? Not really!

Win win situation

- * In hebrew we says: "יצא שכרו בהפסדו"....
- * Loose:
 - * ATLAS:
 - * Many people diverged from other activities.... other channels paid the price!
 - * HEP:
 - * Funding agencies might be more sceptic now.....
- * Gain:
 - * ATLAS:
 - * We learnt a lot during the process of understanding and scrutinizing!
 - * We advanced the photon performance, the statistical treatment etc.
 - * HEP:
 - * Enjoy the excitement! We need it sometimes ;)
 - * New models/ideas to explain such anomaly.

What's next?

- * Extending the mass range:
 - * Low mass.
 - * Closing the gap 150-200GeV.
 - * High mass >3TeV.
- * Looking for non resonant signals in diphoton final states.
- * Adding interference effects.... always ignored;(

THANK YOU FOR YOUR ATTENTION

High Energy Physics

- Probing matter with very high energy in order to study the particles that made the universe.
- In the LHC, we can probe for the first time the highest energy ever (100GeV-1TeV) and the smallest distance ever (10⁻¹⁸-10⁻¹⁹m).

