

Condition prototype and beyond

Hadrien Grasland

LAL - Orsay

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Prototype status

- Condition handling prototype delivered on time for MS41
- Performance benchmarks added, allow...
 - Detailed performance analysis
 - Testing of specific usage scenarios
 - Regression checking
- Prototype presented to the LHCb experiment^[1]
 - Some interesting feedback and optimization suggestions
 - Overall, no major objection to this design
- Path towards DD4Hep integration was discussed

Current prototype performance

Measurements on a Xeon E5-1620 v3 @ 3.50GHz:

μs	ns	
5,4	5 400,0	\rightarrow Minimal event scheduling delay (when conditions are ready)
L2,3 1	.2 300,0	\rightarrow Minimal condition slot creation delay (for 1 condition)
1,0	1 000,0	\rightarrow Minimal ConditionAlg scheduler startup delay
0,0	-0,1	\rightarrow Extra event scheduling delay per condition (negligible)
0.3	332.0	\rightarrow Condition creation delay
0,0	9,8	\rightarrow Condition readout delay
0.1	71.8	\rightarrow ConditionAlg scheduling delay
	5,4 1,0 0,0 0.3 0,0	5,45 400,02,312 300,01,01 000,00,0-0,10.3332.00,09,8

Analysis:

- Small event scheduling overhead when conditions do not change (couple of µs, comparable to scheduling a TBB task!)
- Condition reads are extremely cheap (overhead is barely measurable)
- ConditionSlot creation and condition writes can be more expensive
 - Not a concern for LHCb, impact must be evaluated for ATLAS

Next steps for the prototype

- Performance evaluation for ATLAS use cases
 - Need some orders of magnitude: Amount of conditions? HLT input rate? Amount of HLT nodes?
 - To be discussed with Andrea Formica, Walter Lampl...
- Need to plan for Gaudi integration
 - Salient issue: (lack of) asynchronous IO in Gaudi

Asynchronous IO

- Basic principle: CPUs should not wait for IO devices
 - Start an IO operation, synchronize only when needed
 - Powerful interface for this: C++ Concurrency TS futures (as implemented by Boost.Thread, HPX, Just::Thread...)
 - Many possibilities: blocking, polling, continuations...
- Diverging opinions on async IO integration into Gaudi
 - Blocking Algorithms modeling IO operations?
 - Asynchronous Services modeling IO resources?
- Major consequences on condition handling, IO strategy should be decided before prototype is integrated

Questions? Comments?

Condition prototype @ https://gitlab.cern.ch/hgraslan/conditions-prototype