

Availability Studies for LINAC 4

Odei Rey Orozco, Andrea Apollonio

Acknowledgments: M. Jonker, R. Schmidt, J. Uythoven

Contents

- Introduction
- Failure Catalogue
- Availability model
 - Assumptions
 - Implementation
 - First estimations
- Conclusions and Future plans

Introduction

CERN Injector Complex

LINAC4 provides beam for LHC and several other experiments

Linac4 at CERN

- Linac4 is the future linear accelerator that will replace Linac2 in the CERN injector complex
- Under commissioning
- □ Availability-critical accelerator: target > 95 % availability
- □ Linac4 will be in operation from 2019 (after LS2)
- Dedicated Reliability Run foreseen to start end of spring 2017

Goal of the availability study: Predict the expected availability

Linac4 layout and Parameters

Linac4 Availability Studies

Procedure:

Goal of the availability study: Predict the expected availability

- ✓ Together with system experts and data from Linac2 -> Failure Catalogue
- Data from the failure catalogue -> Availability models
- ✓ First estimations

2.

1.

- Reliability run data -> Refine models and reproduce RR performance
- Predict Linac4 future operation
- Provide guidelines for Linac4 performance improvement

Failure Catalogue

Gathering data for availability models

12/01/2017

Linac4 Failure Catalogue

- Failure Mode Analysis
- Based on
 - outcome of meetings with system experts
 - failure data from Linac2
- Identification of system components and failure modes
- Quantification of failure effects (mainly in terms of downtime)
- Link information with SNS Failure Catalogue

... <u>Continuously updated</u> Started in 2012 and followed-up in the commissioning

45keV		3MeV		50MeV 100		MeV 160MeV	
H ⁻ Source	LEBT	RFQ I	MEBT	DTL			Transfer Line
	Low Energy Beam Transfer	Radio- Frequency Quadrupole	Medium Energy Beam Transfer	Drift Tube Linac	Coupled Cell Drift Tube Linac	Pi Mode Structure	-

	section: Linac4	No. of componen ts	BEAM CONDITION	FAILURE MODE	LOCATION OF BEAM LOSSES	MTTR (h)	COMMENTS *repair in the tunnel: venting incl. consign. 20', deconsign. 10'	MTBF (
1	1) SOURCE	1	80mA H-, 45keV, 0.25 umrad	H- source not availableor below nominal intensity	Source/LEBT			
	1.1) HYDROGEN			Hydrogen delivery system	Plasma generator	3.00	3h*	2.60E+0
F				Hydrogen pulser	Plasma generator	3.00	3h*	8.76E+0
ŀ	1.2) RF-SOURCE			LLRF controller	Plasma generator	2.00	2 h	1.70E+0
F	,			RF-amplifier	Plasma generator	2.00	6h	8.76E0
ŀ				Matching network connection	Plasma generator	1.00	1 h*	2.60E+0
E				RF-antenna - air ionization	Source	24.00	24 h*	2.60E+0
ŀ	1.3) PLASMA GENERATOR			Plasma generator leak	Plasma generator	24.00	24 h*	1.70E+0
F				Plasma electrode Bias power supply	Ť	1.00	1 h*	1.70E+0
F				Permanent magnets		24.00	24 h*	2.60E+0
Ē				Vis ceramique		24.00	24 h*	2.60E+0
ŀ	1.4) SOURCE HIGH VOLTAGE			10 kV Puller-dump transformer	Source	3.00	3 h*	2.60E+0
				45 kV HV transformer	Source	3.00	3 h*	2.60E+0
				25/45 kV Einzel Lens transformer	Source	3.00	3 h*	2.60E+0
				Fron-end insulator	Source	72.00	72 h*	2.60E+0
F				10/25/45 kV converter	Source	3.00	3 h	8.76E0
ŀ	1.5) CESIATION SOURCE			CS-heating system		1.00	1 h*	1.70E+0
Γ				Air cooling system		1.00	1 h*	1.70E+0
F				Cs-valve motorization		1.00	1 h*	8.76E0
┝	1.6) SOURCE VESSELS			Flange leak	Source	24.00	24 h*	2.60E+0
þ				Front-end leak	Source	72.00	72 h*	2.60E+0
ŀ				TM numn	-	3.00	2 h*	1 705+(

Requirements for Linac4 Accelerator Fault Tracker:

Categories based on failure catalogue structure

12/01/2017

Linac4 Failure Catalogue

- EM Magnets failures
 - Powering failure
 - Controls failure
 - Measurement failure
- RF Cavities failures
 - Sparking
 - Movable tuners not working
 - Pressure on water system

Some data still missing

- RF Cavities LLRF and Interlock systems components failure data
- LEBT Chopper synchronization failure
- Vacuum failure behaviour under discussion
- Beam Instrumentation failure data

• ...

14 Main Categories

- H- Source
- LEBT
- RFQ (RF System)
- MEBT
- DTL (RF System)
- CCDTL (RF System)
- PIMS (RF System)
- Vacuum
- Electro Magnets
- Dump
- Technical Network*
- Machine Interlocks
- Beam Instrumentation*
- Accelerator Controls*

Failure data from Linac2 fault data 2007-2016

Availability model

Assumptions

12/01/2017

Linac4 Availability model: Assumptions

- Data from Failure Catalogue
- Simulation period: 1 year (operation 24/7)
- Components failure behaviour follow an <u>exponential distribution</u>
- □ Maintenance / repairs:
 - Only <u>repairs when the system is down</u> due to components failures
 - Repairs of different systems can be done simultaneously
 - All repairs must finished before restarting the Linac4

□ The system is down after failure -> <u>No components failure during repair</u>

Availability model

Implementation

12/01/2017

Linac4 Availability model: Implementation

- Linac4 failure behaviour modelled by Reliability Block diagrams
- Each block can be assigned a failure mode...
 - Failure distribution
 - MTTF
 - Consequences
- ...and a maintenance strategy

Availability model

First estimations

12/01/2017

Downtime contributors

Results from 300.000 simulations STD down time(h) = 0.186 Error % in DT(h) =0.05

Downtime contributors

Results from 300.000 simulations STD down time(h) = 0.186Error % in DT(h) = 0.05

- Contribution proportional to the number of cavities
 - Movable tuners redundancy

CÉRN

RF System downtime contribution by subsystem

 RF Powering System mayor contributors to RF System downtime

Failure root cause

Results from 300.000 simulations STD down time(h) = 0.186Error % in DT(h) = 0.05

Failure root cause

Results from 300.000 simulations STD down time(h) = 0.186Error % in DT(h) = 0.05

- Contribution proportional to the number of cavities
 - Movable tuners redundancy

FRI

RF System failure contribution by subsystem

 Cavity Sparking main failure causing the RF system failure

Failure root cause

Results from 300.000 simulations STD down time(h) = 0.186Error % in DT(h) = 0.05

Major contributors to H- Source failure:

- Controls
- Vacuum
- High Voltage
- RF Source
- Cesiation Source

Failure root cause

Results from 300.000 simulations STD down time(h) = 0.186Error % in DT(h) = 0.05

Availability	Mean down time	Failures	Mean time to operate (MTTO)	Mean time to repair (MTTR)	MTBF
95.8%	15 days 3 h / 1 year	102	3 days 10h	3 h 30 min	3 days 13.5h

Results from 300.000 simulations STD down time(h) = 0.186Error % in DT(h) = 0.05

Downtime contributions	Failure root cause
H- Source (43.4%)	RF System (44.7%)
RF System (37.6%)	H- Source (17.7%)
Dump (6.6%)	Electro Magnets (9%)

Conclusions and future plans

Conclusions and future plans

- Based on system experts estimates
 - the target of 95% availability seems to be in reach
 - the H- Source is the biggest contributor to downtime
- Fault tracker important for gathering real data
- Implementation of the model in AvailSim (under development)
- Review of Failure Catalogue on-going (Vacuum System)

After the RR....

- Refine models using the Reliability Run data as input
- Predict Linac4 future operation
- Provide guidelines for Linac4 performance improvement

Thank you!

