The Mu2e Experiment: Search for Charged Lepton Flavor Violation

Matthew Jones
Purdue University

Why Search for Lepton Flavor Violation?

 Flavor changing weak interactions are ubiquitous in the quark sector:

 Lepton flavor violation is observed in the neutrino sector:

$$\nu_e \leftrightarrow \nu_\mu \qquad \qquad \nu_\mu \leftrightarrow \nu_\tau$$

 Why shouldn't we also expect charged lepton flavor violation?

Charged Lepton Flavor Violation

- NOT forbidden by any symmetry principles
- It is an allowed process in the standard model:

Predicted branching fraction:

$$B_{SM}(\mu \rightarrow e \gamma) \sim 10^{-54}$$

 This is unmeasurably small... any observed signal would have to be from something totally new!

Sensitivity to New Physics

Effective Field Theories

$$\mathcal{L}_{EFF} = \frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} (\bar{u}_{L} \gamma^{\mu} d_{L})$$

$$= \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} (\bar{u}_{L} \gamma^{\mu} d_{L})$$

• Mass scale: Λ , relative strength of contact term: κ

Dipole coupling

Contact coupling

• Relative rates of $\mu \to e$ conversion and $\mu \to e\gamma$ are model dependent.

Sensitivity to New Physics

Searches for Charged Lepton Flavor Violation

• Searches for $\mu \rightarrow e \gamma$, $\mu N \rightarrow e N$, $\mu \rightarrow 3e$

History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$

Phys. Rep. 532: 27 (2013)

2017 PIKIO Meeting - IU Bloomington

Muon to Electron Decays

- The electron from $\mu^+ \rightarrow e^+ \gamma$ has $E_e = 52.8 \ MeV$
- Electrons from $\mu^+ \to e^+ \nu_\mu \bar{\nu}_e$ have a range of energies:

 But, if the electron recoiled against something very heavy (like a nucleus) then it could have almost all the energy.

First Experiment

Fig. 1. Arrangement of apparatus.

Muons from cosmic rays are slowed down in the lead and stop in the graphite.

An "event" is triggered by signals in A+B.

• A $\mu \rightarrow e \gamma$ event would cause a delayed coincidence in B+C.

Hincks and Pontecorvo, 1947 "This does not occur..."

• No difference in rate compared with A+B followed by A+B+C... $B(\mu \rightarrow e \gamma) < 0.1$

Most Recent Experiment

Muon Conversion Experiments

Energy spectrum from muons captured by an atomic nucleus (Decay In Orbit – DIO): Czarnecki, Tormo, and Marciano, Phys. Rev. D 84, 013006 (2011).

- E_e from $\mu^- + N \rightarrow e^- + N$ is about $105 \, MeV$
- Almost no background from DIO... if the electron momentum can be measured precisely enough.

SINDRUM-II Result: $\mu^- N \rightarrow e^- N$

One event observed! But it lies beyond the expected endpoint of the spectrum.

- Radiative pion capture?
- Cosmic ray?

W. Bertl et al., Eur. Phys. J. C 47, 337-346 (2006)

Muon production at PSI: 0.3 ns pulse every 20 ns

Muons stopped on a gold target.

Mu2e will improve on this result by a factor of 10⁴...

The Mu2e Experiment

- Produce lots of muons: 1.2×10^{20} protons on target/year
 - Pulsed beam experiment: exploit time correlations in measurement
- Select negatively charged muons, stop them on an Al target
 - Captured muon lifetime on Al is $au_{\mu}=864~ns$ ($\Gamma_{total}=\Gamma_{decay}+\Gamma_{capture}$)
- Wait for prompt backgrounds to die off
 - Primarily radiative pion capture, $\pi N \rightarrow \gamma N^*$, $\gamma \rightarrow e^+e^-$
 - Pion lifetime is $au_{\pi}{\sim}26~ns$
- Measure electron energy spectrum
 - Look for an excess at the 105 MeV endpoint
- Normalize to the rate of muon capture:
 - Observe x-rays from $2P \rightarrow 1S$ transitions
- Run like this for 3 years: 6.7×10^{17} stopped muons

The Fermilab Muon Complex

The Mu2e Experiment

Pulsed Proton Beam

- Key parameter: beam extinction
 - Fraction of protons that arrive at the production target *outside* the proton pulse time window
 - Extinction is required to be < 10⁻¹⁰

Muon Production Target

Transport Solenoid

- Selects negative muons with limited range of momentum, optimized for stopping target (7.6 MeV kinetic energy).
- Puts the detector out of the direct line-of-sight for neutrons and gammas.

Detector Solenoid

A 105 MeV electron emerging from the stopping target will be focused back towards the tracker.

Straw Tube Tracker

5 mm diameter

• Wall thickness: $15 \mu m$

Gas mixture: 1 Atm Ar/Co₂

- 20736 straws, read out at both ends.
- Assembled into panels
- Placed in vacuum

Straw Tube Tracker

- Graded magnetic field reflects electrons from the stopping target into the tracker.
- Only sensitive to electrons with energy near the 105 MeV end-point.

Tracking Resolution

Background Estimates

Category	Background process	Estimated yield (events)
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092
Late Arriving	Muon capture (RMC) Pion capture (RPC)	$0.000^{+0.004}_{-0.000}$ 0.023 ± 0.006
	Muon decay-in-flight (μ-DIF) Pion decay-in-flight (π-DIF)	< 0.003 $0.001 \pm < 0.001$
	Beam electrons	0.003 ± 0.001
Miscellaneous	Antiproton induced	0.047 ± 0.024
	Cosmic ray induced	0.092 ± 0.020
	Total	0.37 ± 0.10

- Initial 3-year run is essentially background-free
- Single-event sensitivity expected to be 3x10⁻¹⁷

Summary

- The Mu2e experiment is an important part of the near-term US experimental HEP program.
- Construction is underway, commissioning in 2020
- Longer term upgrades:
 - Lower beam energy to below the \overline{p} production threshold
 - Different target Z
- Historically, the lepton sector has been full of surprises... Will this trend continue?

Mu2e Collaboration

Argonne National Laboratory ● Boston University **Brookhaven National Laboratory** Lawrence Berkeley National Laboratory and University of California, Berkeley • University of California, Irvine • California Institute of Technology City University of New York ● Joint Institute for Nuclear Research, Dubna ● Duke University ● Fermi National Accelerator Laboratory ● Laboratori Nazionali di Frascati ● INFN Genova ● Helmholtz-Zentrum Dresden-Rossendorf ● University of Houston Institute for High Energy Physics, Protvino
 Kansas State University • INFN Lecce and Università del Salento ● Lewis University ● University of Liverpool ● University College London ● University of Louisville ● University of Manchester • Laboratori Nazionali di Frascati and Università Marconi Roma • University of Minnesota • Institute for Nuclear Research, Moscow Muons Inc. ● Northern Illinois University ● Northwestern University

Novosibirsk State University/Budker Institute of Nuclear Physics ● INFN Pisa ● Purdue University ● Rice University ● University of South Alabama • Sun Yat Sen University University of Virginia ● University of Washington ● **Yale University**

Backup Slides

Fermilab Accelerator Complex

Older Experiments

FIG. 1. A schematic diagram of the Crystal Box detector.

Crystal Box Detector Bolton, et al. Phys. Rev. Lett. 56, 2461 (1988) $B(\mu^+ \to e^+ \gamma) < 4.9 \times 10^{-11}$

FIG. 1. A schematic view of the MEGA detector.

The MEGA Detector Phys. Rev. D65, 112002 (2002) $B(\mu^+ \to e^+ \gamma) < 1.2 \times 10^{-11}$

Los Alamos Meson Physics Facility (LAMPF)

Muon Production Target

Muon Production Target

Protons on target per year: 10^{20}

Magnetic mirror

Stopped หานิงกร per year: $2 imes 10^{120}$ 17 PIKIO Meeting - IU Bloomington

Beam Extinction

Target Extinction Monitor

Cosmic Ray Veto

Calorimeter

- Hexagonal BaF₂ or CsI crystals with SIPM or APD readout
- Discrimination between electrons, muons, pions, anti-protons

Nuclear Dependence

What about Tau Decays?

Process	B.R. Limit
$ au o e\gamma$	$< 3.3 \times 10^{-8}$
$ au ightarrow \mu \gamma$	$< 4.4 \times 10^{-8}$
$ au ightarrow \mu \eta$	$< 6.5 \times 10^{-8}$
$ au ightarrow \mu \mu \mu$	$< 2.1 \times 10^{-8}$
au ightarrow eee	$< 2.7 \times 10^{-8}$

- More sensitive to new physics on a per-decay basis
- Cannot compete with the muon production rate

Mu2e
$$R(\mu N \to e N) \sim 10^{-17}$$