Sensitivity of integrated luminosity for beam parameter change

F. Antoniou, R. De Maria, S. Fartoukh, N. Karastathis, Y. Papaphilippou, D. Pellegrini, K. Sjobaek

WP2 meeting, 17/01/2017

HL-LHC PROJEC

Outline

- Xing angle choice during levelling
- Impact on levelling (β* vs. separation)
- Experience 2016:
 - Luminosity lifetime, blow-up, impact on estimated performance
 - Levelling tests
 - Availability
- Projection on integrated luminosity performance

Global DA scanning of parameters

- Tracking set-up:
 - HL-LHC optics v1.2, half available crab voltage
- Octupoles set to 0, chromaticity of 3, nominal tunes
- IP1, IP5 and IP8 head-on, IP2 seperated (halo collisions)
- Assuming constant (round) emittance of 2.5µm
- Tracking with SixTrack for 10⁶ turns and estimating DA (minimum over 5 angles)
- Scanning of crossing angle vs. β* and vs. separation, for various intensities
- Superimposing luminosity curves for the various parameters

Global DA scanning of parameters

- Tracking set-up:
 - HL-LHC optics v1.2, half available crab voltage
- Octupoles set to 0, chromaticity of 3, nominal tunes
- IP1, IP5 and IP8 head-on, IP2 separated (halo collisions)
- Assuming constant (round) emittance of 2.5 µm along stable beams
- Tracking with SixTrack for 10⁶ turns and estimating DA (minimum over 5 angles)
- Scanning of crossing angle vs. β* and vs. separation, for various intensities
- Superimposing luminosity curves for the various parameters
- Target DA of 6 σ, as simulation scenario is optimistic (no errors, no octupoles, low chromaticity,...)

Start of levelling $N_b = 2.2 \times 10^{11}$

Full crossing angle could be reduced to 440 µrad (~19.4 σ separation @ 65 cm β *), keeping the 6 σ DA and the luminosity at 5 x 10³⁴ cm⁻² s⁻¹

- Even for min. β^* of 20 cm @ 510 µrad, DA ~5.5 σ
- For 7.5 x 10³⁴ cm⁻² s⁻¹, the leveling could start at 40 cm with a crossing angle of 480 μrad (16.6 σ)
 S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 2.2e11; I_{MO} = 0 A; Q' = 3 #

During levelling, $N_b = 1.9 \times 10^{11}$

Full crossing angle could be reduced to 340 µrad (~13.1 σ separation @ 50 cm β *), keeping the 6 σ DA and the luminosity at 5 x 10³⁴ cm⁻² s⁻¹ For 7.5 x 10³⁴ cm⁻² s⁻¹, a DA of 6 σ is obtained with a crossing angle of 440 µrad (13.2 σ @ 30 cm)

S.Fartoukh, N. Karastathis, D. Pellegrini

9.0 100 $\mathsf{DA}\left[\sigma\right]$ 8.5 Lumi $[10^{34} \text{ Hz/cm}^2]$ 8.0 7.5 80 7.0 Beta* [cm] 6.5 -60 6.0 5.5 Q 5.0 5.0 40 6.0 4.5 5.0 4.0 3.5 20 3.0 160 180 200 220 240 260 280 300 Crossing Angle/2 [urad]

Min DA; I = 1.9e11; $I_{MO} = 0$ A; Q' = 3 #

For 7.5 x 10^{34} cm⁻² s⁻¹, a DA of 6 σ is obtained with a crossing angle of 430 µrad (10.5 σ @ 20 cm, i.e. reaching the end of β^* levelling)

S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 1.6e11; $I_{MO} = 0$ A; Q' = 3 #

End of levelling, $N_b = 1.275 \times 10^{11}$

Full crossing angle should be increased to 380 μ rad (~9.3 σ separation @ 20 cm), keeping 6 σ DA and luminosity of 5 x 10³⁴ cm⁻² s⁻¹

S.Fartoukh, N. Karastathis, D. Pellegrini Min DA; I = 1.275e11; $I_{MO} = 0$ A; Q' = 3 #

Extra levelling, $N_b = 1.25 \times 10^{11}$

Some extra levelling time can be gained by levelling with the crossing angle at DA close to 6 σ and constant β^* of 20 cm

A few remarks

- Crossing angle can be reduced during levelling to 6 σ DA, reducing pile-up density and triplet irradiation
- Full crabbing can be achieved with two cavities (max kick of 380 µrad) for currents < 2 x 10¹¹ almost through the whole levelling process
- Some small leveling time (and performance) can be gained @ 20 cm, by levelling with the crossing angle
- Need to complement the DA simulations down to 15 cm especially for the ultimate scenario and span also lower crossing angles

HILUNI PROJECT

Performance

Estimate impact in integrated luminosity and pile-up density for nominal and ultimate, for mentioned "crossing adaptive levelling"

X. Buffat, HL-LHC meeting 2016

Separation levelling $N_b = 2.2 \times 10^{11}$

 β^* kept constant while levelling the luminosity by separation

- For 5 x 10^{34} cm⁻² s⁻¹, the leveling could start at 1.8 σ separation with a large crossing angle of 550 µrad (13.4 σ)
- For 7.5 x 10³⁴ cm⁻² s⁻¹, the leveling could start at 1.2 σ with a crossing angle of 580 µrad (14.2 σ)
 S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 2.2e11

Separation levelling $N_b = 1.9 \times 10^{11}$ DA seems quite independent on separation For both nominal (1.6 σ separation) and ultimate (1 σ separation), a crossing of 500 µrad (12.2 σ) maintains DA S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 1.9e11

Separation levelling $N_b = 1.6 \times 10^{11}$ DA seems again quite independent on separation

- For 5 x 10^{34} cm⁻² s⁻¹, the leveling could continue with a 1.2 σ separation with a crossing angle of 450 µrad (11 σ)
- For 7.5 x 10^{34} cm⁻² s⁻¹, the leveling can stop @ a crossing angle of 440 µrad (10.8 σ) S.Fartoukh, N. Karastathis, D. Pellegrini Min DA; I = 1.6e11

Separation levelling $N_b = 1.275 \times 10^{11}$

Separation levelling for nominal scheme ends (a) 380 μ rad (~9.3 σ)

S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 1.275e11

Separation levelling $N_b = 1.2 \times 10^{11}$

The same crossing angle levelling scheme can be pursued as before to gain some extra levelling time and optimize performance

S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 1.25e11

16

Levelling experience in 2016

Levelling by **separation** demonstrated in test fills during 2016

- **Fine tune** adjustments and **reduction** of
- **octupoles/chromaticity** necessary to improve lifetime during levelling
- Satisfying possible request of experiments or when reaching cryogenics' limit
- Changing X-angle from fill-tofill (adapt H/V emittance ratio or increase peak luminosity) or levelling during stable beams (range of 60 µrad in X/2-angle)

Beam losses

F.Antoniou, Evian 2016

- Normalized loss rate for all fills
- Losses on-top of Burn-off were observed for many fills
- Mainly the first 3h and then become burn off dominated

Beam losses

F.Antoniou, Evian 2016

- Evolution of the average normalized losses (after one hour in SB) along the run
- Beam 1 losses higher than Beam 2 losses
- Minimum losses after the transition to BCMS (Beam 2 losses become burn-off dominated)
- Increase of losses after the crossing angle change followed by an improvement trend
- Clear impact of the LHCb polarity changes

Expected Emittance blow-up

20

Observed Emittance

Observed Emittance

Extra Emittance blow-up

Extra Emittance blow-up

Luminosity loss

- The integrated luminosity over the first 3h is calculated for each model assumption
- Integrated luminosity loss due to:
 - extra losses:
 - extra emittance blow up

- Contribution of the extra emittance blow-up is constant over the year
- Contribution of extra losses is sensitive to changes in the machine

- Based on observation from 2016
 - Estimate luminosity evolution for HL-LHC scenarios by assuming an extra blow-up growth rate based on the data
 - Correlated with brightness?
 - Including realistic evolution from injection to stable beams
 - Including availability observed in 2016

Impact of LHCb polarity - octupoles

- Tune scans for 550A octupole and LHCb on with good polarity, end of levelling parameters, nominal scheme
- DA quite limited...

N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; $I_{MO}{=}550$ A; $\epsilon{=}2.5~\mu{m};$ X=255 $\mu{rad};$ LHCb on

- Tune scans for **O octupole** and LHCb on with good polarity, end of levelling parameters, nominal scheme
- Recovering DA towards the diagonal

N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; I_{MO} =0 A; ϵ =2.5 μ m; X=255 μ rad; LHCb on

- Tune scans for -550 octupole and LHCb off, end of levelling parameters, nominal scheme
- DA even more improved

N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; I_{MO} =-570 A; ϵ =2.5 μ m; X=255 μ rad; LHCb off

- Tune scans for -550 A octupole and LHCb on, with "good polarity" end of levelling parameters, nominal scheme
- DA degraded especially close to 3rd and 10th order resonances

N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; I_{MO}=-570 A; ϵ =2.5 µm; X=255 µrad; LHCb on

- Tune scans for -550 A octupole and LHCb on, with "bad polarity" end of levelling parameters, nominal scheme
- DA degraded mostly close to 10th order resonances
 N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; I_{MO} =-570 A; ϵ =2.5 μ m; X=255 μ rad; LHCb inv

Thanks for your attention

