Hilumi hl-LHC PROJECT
 Sensitivity of integrated luminosity for beam parameter change

F. Antoniou, R. De Maria, S. Fartoukh, N. Karastathis, Y. Papaphilippou, D. Pellegrini, K. Sjobaek

WP2 meeting, 17/01/2017

Outline

Xing angle choice during levelling Impact on levelling (β^{*} vs. separation)

- Experience 2016:
- Luminosity lifetime, blow-up, impact on estimated performance
- Levelling tests
- Availability
- Projection on integrated luminosity performance

Global DA scanning of parameters

- Tracking set-up:
- HL-LHC optics v1.2, half available crab voltage
- Octupoles set to 0, chromaticity of 3, nominal tunes
- IP1, IP5 and IP8 head-on, IP2 seperated (halo collisions)
- Assuming constant (round) emittance of $2.5 \mu \mathrm{~m}$
- Tracking with SixTrack for 10^{6} turns and estimating DA (minimum over 5 angles)
- Scanning of crossing angle vs. β^{*} and vs. separation, for various intensities
- Superimposing luminosity curves for the various parameters
()

Global DA scanning of parameters

- Tracking set-up:
- HL-LHC optics v1.2, half available crab voltage
- Octupoles set to 0, chromaticity of 3, nominal tunes
- IP1, IP5 and IP8 head-on, IP2 separated (halo collisions)
- Assuming constant (round) emittance of $2.5 \mu \mathrm{~m}$ along stable beams
- Tracking with SixTrack for 10^{6} turns and estimating DA (minimum over 5 angles)
- Scanning of crossing angle vs. β^{*} and vs. separation, for various intensities
- Superimposing luminosity curves for the various parameters
- Target DA of 6σ, as simulation scenario is optimistic (no errors, no octupoles, low chromaticity,...)
()

Start of levelling $\mathrm{N}_{\mathrm{b}}=2.2 \times 10^{11}$

Full crossing angle could be reduced to 440 urad (~ 19.4 o separation @ $65 \mathrm{~cm} \beta^{*}$), keeping the $6 \sigma \mathrm{DA}$ and the luminosity at $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ Even for min. β^{*} of $20 \mathrm{~cm} @ 510 \mu \mathrm{rad}, \mathrm{DA} \sim 5.5$ o For $7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, the leveling could start at 40 cm with a crossing angle of $480 \mu \mathrm{rad}(16.6 \sigma)$
S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; $I=2.2 e 11 ; I_{\text {MO }}=0 A ; Q^{\prime}=3$ \#

During levelling, $\mathrm{N}_{\mathrm{b}}=1.9 \times 10^{11}$

Full crossing angle could be reduced to 340 urad (~ 13.1 o separation @ $50 \mathrm{~cm} \beta^{*}$), keeping the 6σ DA and the luminosity at $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ For $7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, a DA of 6σ is obtained with a crossing angle of $440 \mu \mathrm{rad}(13.2$ o @ 30 cm)
S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; $I=1.9 \mathrm{e} 11 ; \mathrm{I}_{\mathrm{MO}}=0 \mathrm{~A} ; \mathrm{Q}^{\prime}=3$ \#

During levelling, $\mathrm{N}_{\mathrm{b}}=1.6 \times 10^{11}$

Full crossing angle could remain at 340 urad (~11 o separation @ 35 cm β^{*}), keeping the 6σ DA and the luminosity at $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- For $7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, a DA of 6σ is obtained with a crossing angle of $430 \mu \mathrm{rad}\left(10.5 \sigma @ 20 \mathrm{~cm}\right.$, i.e. reaching the end of β^{*} levelling)
S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 1.6e11; $I_{\text {MO }}=0 A ; Q^{\prime}=3$ \#

End of levelling, $\mathrm{N}_{\mathrm{b}}=1.275 \times 10^{11}$

 Full crossing angle should be increased to 380 prad (~9.3 o separation @ 20 cm), keeping 6 o DA and luminosity of $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; $\mathrm{I}=1.275 \mathrm{e} 11 ; \mathrm{I}_{\mathrm{MO}}=0 \mathrm{~A} ; \mathrm{Q}^{\prime}=3$ \#

Extra levelling, $\mathrm{N}_{\mathrm{b}}=1.25 \times 10^{11}$

 Some extra levelling time can be gained by levelling with the crossing angle at DA close to 6σ and constant β^{*} of 20 cmMin DA; I = 1.25e11; $\mathrm{I}_{\mathrm{MO}}=0 \mathrm{~A} ; \mathrm{Q}^{\prime}=3$ \#
S.Fartoukh, N. Karastathis, D. Pellegrini

A few remarks

Crossing angle can be reduced during levelling to 6 o DA, reducing pile-up density and triplet irradiation

- Full crabbing can be achieved with two cavities (max kick of $380 \mu \mathrm{rad}$) for currents $<2 \times 10^{11}$ almost through the whole levelling process
- Some small leveling time (and performance) can be gained@20 cm, by levelling with the crossing angle
- Need to complement the DA simulations down to 15 cm especially for the ultimate scenario and span also lower crossing angles

Performance

Estimate impact in integrated luminosity and pile-up density for nominal and ultimate, for mentioned "crossing adaptive levelling"
X. Buffat, HL-LHC meeting 2016

Separation levelling $N_{b}=2.2 \times 10^{11}$

 β^{*} kept constant while levelling the luminosity by separation For $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, the leveling could start at 1.8σ separation with a large crossing angle of 550 urad (13.4 σ)- For $7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, the leveling could start at 1.2σ with a crossing angle of 580 Srad (14.2 б) Fartoukh, N. Karastathis, D. Pellegrini Min DA; I = 2.2e11

Separation levelling $\mathbf{N}_{\mathrm{b}}=1.9 \times 10^{11}$

 DA seems quite independent on separationFor both nominal (1.6 σ separation) and ultimate (1 σ separation), a crossing of $500 \mu \mathrm{rad}(12.2 \sigma$) maintains DA
S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; I = 1.9el1

Separation levelling $N_{b}=1.6 \times 10^{11}$

DA seems again quite independent on separation
For $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, the leveling could continue with a 1.2σ separation with a crossing angle of 450 urad (11 o)

- For $7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, the leveling can stop @ a crossing angle of $440 \mu \mathrm{rad}(10.8 \mathrm{\sigma}) \quad$ S.Fartoukh, N. Karastathis, D. Pellegrini Min DA; I = 1.6 e 11

Separation levelling $N_{b}=1.275 \times 10^{11}$

 Separation levelling for nominal scheme ends @ $380 \mu \mathrm{rad}(\sim 9.3 \sigma)$S.Fartoukh, N. Karastathis, D. Pellegrini

Min DA; $\mathrm{I}=1.275 \mathrm{e} 11$

Separation levelling $\mathrm{N}_{\mathrm{b}}=1.2 \times 10^{11}$

 The same crossing angle levelling scheme can be pursued as before to gain some extra levelling time and optimize performanceS.Fartoukh, N. Karastathis, D. Pellegrini Min DA; I = 1.25e11

Levelling experience in 2016

\square Levelling by separation demonstrated in test fills during 2016
\square Fine tune adjustments and reduction of octupoles/chromaticity necessary to improve lifetime during levelling
\square Satisfying possible request of experiments or when reaching cryogenics' limit
\square Changing \mathbf{X}-angle from fill-tofill (adapt \mathbf{H} / \mathbf{V} emittance ratio or increase peak luminosity) or levelling during stable beams (range of $60 \mu \mathrm{rad}$ in $\mathrm{X} / 2$-angle)

Min DA; Q' $=15$; $\mathrm{I}_{\mathrm{MO}}=550 \mathrm{~A} ;$ IP8 LVL; LHCb - pol; $\varepsilon_{\mathrm{n}}=2 \mu \mathrm{~m}$

Beam losses

- Normalized loss rate for all fills
- Losses on-top of Burn-off were observed for many fills
- Mainly the first 3h and then become burn off dominated

Beam losses
 Averaged over the first 1.0h

- Evolution of the average normalized losses (after one hour in SB) along the run
- Beam 1 losses higher than Beam 2 losses
- Minimum losses after the transition to BCMS (Beam 2 losses become burn-off dominated)
- Increase of losses after the crossing angle change followed by an improvement trend
- Clear impact of the LHCb polarity changes

Expected Emittance blow-up

Observed Emittance

 blow-up

Observed Emittance

 blow-upBeam 1

Beam 2

Extra Emittance blow-up

Extra Emittance blow-up

F.Antoniou

Luminosity loss

- The integrated luminosity over the first 3 h is calculated for each model assumption
- Integrated luminosity loss due to:
- extra losses:
- extra emittance blow up
\rightarrow Contribution of the extra emittance blow-up is constant over the year
\rightarrow Contribution of extra losses is sensitive to changes in the machine

Availability

Remarks

Based on observation from 2016

- Estimate luminosity evolution for HL-LHC scenarios by assuming an extra blow-up growth rate based on the data
- Correlated with brightness?
- Including realistic evolution from injection to stable beams
- Including availability observed in 2016

Impact of LHCb polarity - octupoles

Effect of octupoles and LHCb

 Tune scans for 550A octupole and LHCb on with good polarity, end of levelling parameters, nominal scheme- DA quite limited...
N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; $Q^{\prime}=3 ; I_{M O}=550 \mathrm{~A} ; \varepsilon=2.5 \mu \mathrm{~m} ; \mathrm{X}=255 \mu \mathrm{rad} ; \mathrm{LHCb}$ on

Effect of octupoles and LHCb

Tune scans for \mathbf{O} octupole and LHCb on with good polarity, end of levelling parameters, nominal scheme

- Recovering DA towards the diagonal

N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; $\mathrm{I}_{\mathrm{MO}}=0 \mathrm{~A} ; \varepsilon=2.5 \mu \mathrm{~m} ; \mathrm{X}=255 \mu \mathrm{rad}$; LHCb on

Effect of octupoles and LHCb

 Tune scans for -550 octupole and LHCb off, end of levelling parameters, nominal scheme- DA even more improved
N. Karastathis, D. Pellegrini

HL-LHC v.1.2 - Min DA; Q'=3; $\mathrm{I}_{\mathrm{MO}}=-570 \mathrm{~A} ; \varepsilon=2.5 \mu \mathrm{~m} ; \mathrm{X}=255 \mu \mathrm{rad} ; \mathrm{LHCb}$ off

Effect of octupoles and LHCb

Tune scans for -550 A octupole and LHCb on, with "good polarity" end of levelling parameters, nominal scheme DA degraded especially close to $3^{\text {rd }}$ and $10^{\text {th }}$ order resonances
N. Karastathis, D. Pellegrini

Effect of octupoles and LHCb

Tune scans for -550 A octupole and LHCb on, with "bad polarity" end of levelling parameters, nominal scheme

- DA degraded mostly close to $10^{\text {th }}$ order resonances N. Karastathis, D. Pellegrini

Summary

Thanks for your attention

