Computer Architecture and Performance Tuning

Understanding performance
tuning

Andrzej Nowak

CERN openlab

\ » CERNopenlab Summer Student Lectures 2009

- .r’
CERN

openlab

i

Understanding Performance Tuning

Contents

. Software performance tuning in general
. Drilling down on performance figures

. Perfmon2 as an example of a performance monitoring
framework

. Pfmon abilities and usage

In this talk, we focus on x86_64 processors (Intel Core
and friends, AMD Athlon/Barcelona, etc)

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Performance tuning in general

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Rationale

1% gained in performance can be equal to $1min of savings
Better performance = money

4 Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Improving application performance

= Question #1 — “Why is it SOOOO0OO0O SLOW?”

= Upgrading hardware
= Removing common bottlenecks
= New CPU, new hard drive, more memory
= New, new, new...

= Replacing whole software components
= Replacing shared or external libraries

= Improving existing code

= Performance monitoring will give you the answer

= |t allows you to find the things you could change in your setup to
Improve performance

Andrzej Nowak — CERN openlab

10000

Clock speed (MHz)

Understanding Performance Tuning

The free ride I1s over

Intel processor clock speed

1000

100

10

0.1 T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Time

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

The situation today

In short, analogy to cars:

= Newly produced cars can take more and more people but drive only
40 mph. How do you find more passengers and how do you set up
the route?

Multi-core is prevalent
= You have 2 cores in your iPod!
= Several “cores” or “processors” in your Playstation3, XBOX 360

= How do you create programs which run well in many “copies”
(threads)?

24 “processors” inside a computer today
64 by the end of the year

The way you write software will become completely different!

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Performance tuning

Why tune performance?
= To get more speed and/or throughput...

= ...or to just keep up with the hardware or previous
performance figures

= Processor clock frequencies don’t go up anymore! No
free meals since the millennium

Who needs performance tuning?

Who can do performance tuning?
= Some bottlenecks are really easy to find...
= ... but performance tuning can be VERY tricky

Performance tuning is a lot like tuning a car... but you
can do well with only one wrench and you don’t need all
those expensive parts

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Performance tuning levels - examples

Source code
= Function calls _ _
= Excessive calls of a function or a group of functions

= Blocking (i.e. I/O)

= Loops within your program
= |terating over sparse/long structures

= General characteristics of your program
= Excessive memory allocations and copying, excessive calculations,
checks, malformed conditions, etc.

Operating system
= Running daemons, limits, co-existing processes, I/O, libraries

Hardware

3 tI?F]uy new, better hardware... not always possible, even if the money is
ere

Hardware counter level
= Can relate to all of the above... if well implemented

9 Andrzej Nowak — CERN openlab

10

Understanding Performance Tuning

Popular performance tuning software (1)

gprof
= Flat profiles, call lists

= Recompilation needed

oprofile
= Flat profiles
= Kernel driver needed

PIN, Valgrind
= [nstrumentation / Synthetic software CPU

= Simulate such characteristics as cache misses and branch
mispredictions, memory space usage, function call relationships

pfmon / perfmon2
= Low level access to counters
= No recompilation needed

= Kernel patch needed today, but will be a part of the standard Linux
kernel

Andrzej Nowak — CERN openlab

11

Understanding Performance Tuning

Popular performance tuning software (2)

Intel products:

= VTune, PTU — very powerful
= Thread Checker, Thread Profiler — for multithreading

= VTune In Linux requires a precompiled kernel module

HP Caliper

ol [FAww oL =0
Process: crafty.01(2244) Thread: all Load Module: crafty.01
'EE Process Treel D Memory Usage =] Histogram In’S‘: Call Graphl
Seconds Call 1 D:Sg:::& _Pr:gfsnt
in Count I
% Grand Totals || % Grand Totals 1% 2
Functions [H] =
Evaluate 3532 1 3571
EvaluatePanns] 1134 o 1591
FirstOne 894 [t} 37989
MakeMove 763 0 3379
Quiesce 608] 3240
Swap 572 0 2756
UnMakeMove 570 0 3328
GenerateCaptures 555 a 1315
Search 515 0 445
Attacked 409 a 3976
NextMove 397 a 2034
PopCnt 311 Q 33768
AttacksTo 308 a 2837
SwapXray 268] 5594
EvaluatePassedPawns 2 0 1310
LastOne 132 a 8353
GenerateNonCaptures 50 a 5%
LookUp 41 1] 427 w
< i 1 I
Processes | Load Modules Functions I
—

[
= VTune

Bype gt yow acivey Configre

HEY =&
= VT Fiomctd

= &% Activity] [Call Giaph)
=l ol G Resudts - oty
Tolal Ture
Sl Tane
Mumber of Caly
Cal Site Total Timee
sl St Mg of |

Graph - [Cal

Yondow e

e B Be %

raph Results - [viunesdhp?] - Su

|| [Betty [Geagh]

“pE X D% ¥

Modube (1004)
= Total
= forkRiecursiv - Total
= forkPecursie
forkRecursie

+ Thread (1004) Function {1004)

Thread_400 _.
Thread 400 dvdfd

Clags (1004) Calls (1004) | Self Teme (1004) Tet:i ™

168 10,010 604
13 192
13 19
5 2 =

»

I T N

FEA S

B 9 | Showion [hutn <] %[Rocakodain | Highigtt [tiane

Andrzej Nowak — CERN openlab

12

Understanding Performance Tuning

Platform tuning and debugging

Sometimes tuning the application is not enough, or not
the right thing to do

Traditional tools: iostat, netstat, vmstat, pmap
More advanced tools: strace, Itrace, SystemTap, utrace

Great paper from IBM: “Linux Performance and Tuning
Guidelines”

= Quote: “IBM has embraced Linux”
= http://www.redbooks.ibm.com/abstracts/redp4285.html

Andrzej Nowak — CERN openlab

13

Common sense tips

Know vour system

Understanding Performance Tuning

Look for bottlenecks and understand them
= Use and understand the tools

Change one thing at a time
= Will other components be able to keep up with this

change?

Keep a good log of your activities and conditions

Performance tuning Is an iterative process

®

Andrzej Nowak — CERN openlab

IMPORTANT
INFORMATION

14

Understanding Performance Tuning

Common performance figures

And how to interpret them

Andrzej Nowak — CERN openlab

15

Understanding Performance Tuning

Performance monitoring in hardware

= Most modern CPUs are able to provide real-time
statistics concerning executed instructions...

= ...viaaPerformance Monitoring Unit (PMU)

= The PMU is spying in real time on your application! (and
everything else that goes through the CPU)

= Limited number of “sentries” (counters) available, but
they are versatile

= Recorded occurrences are called events

= Typically on modern Intel CPUs:
= 2-4 universal counters (#0, #1 (#2, #3))

= 3 specialized counters (#16, #17, #18) IMPORTANT
= Additional 8 “uncore” counters INFORMATION

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Basic information about your program
Recap

= The amount of:
= |nstructions executed
= processor cycles spent on the program
= transactions on the bus

= The amount/percentage of:
= memory loads and stores
= floating point operations
= vector operations (SIMD)
= pranch instructions
= cache misses

16 Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Advanced information about your program

= The amount and type of:
" micro-ops executed
= SIMD instructions executed
= resource stalls within the CPU

= Cache access characteristics
= A rich set on Intel Core CPUs
= Demand

= Requests (missed / hit / total / exclusive or shared / store
or read)

= Lines modified / evicted / prefetched

17 Andrzej Nowak — CERN openlab

18

Understanding Performance Tuning

Derived events

= Too much information available?

= Low level and fine grained events can be combined to
produce ratios (so called “derived events™)

= Extensive information:

= |Intel Manual 248966-016 “Intel 64 and |A-32
Architectures Optimization Reference Manual”

= AMD CPU-specific manuals, i.e. #32559 “BIOS and

Kernel Developer’'s Guide for AMD NPT Family OFh
Processors”

Andrzej Nowak — CERN openlab

19

Understanding Performance Tuning

A word for the future

Mapping performance monitoring data onto your source
code and environment requires care and experience

Andrzej Nowak — CERN openlab

20

Understanding Performance Tuning

The CPI figure and its meaning
CPIl — cycles per instruction

= Thanks to multiple execution ports (superscalar
architecture), more than one instruction can be
executed per cycle

= |n Intel Core 2 CPUs, CPI can go as low as 0.25
= 4 instructions per cycle

= CPIl above 1.0 is not impressive

The ratio of the number of CPU cycles spent on a
program to the number of program instructions
retired by the CPU

CYCLES /INSTRUCTIONS

This figure illustrates the CPU usage efficiency,
but, like all ratios, can be tricky to interpret

Andrzej Nowak — CERN openlab

21

Understanding Performance Tuning

Cache misses

If the requested item is not in the polled
cache, the next level has to be consulted
(cache miss)

Significant impact on performance

Formula;

LAST LEVEL CACHE MISSES / LAST
LEVEL CACHE REFERENCES

Tips:
= A L2 cache hit ratio below 95% is
considered to be catastrophic! (=5% miss)

Data request

L1

L2

= Usually the figure should be above 99%

= The overall cache miss rate might be low
(misses / total instructions), but the
resource stalls figure might be high;
always check the cache miss percentage

Andrzej Nowak — CERN openlab

L3

Understanding Performance Tuning

Cache miss demo

. 50 cycles of work (incl. L1 consultations/misses)

50 cycles of work with one L2 cache miss

50 cycles of no work

. . profiled

section

Assuming 20% of the instructions are loads and 3% of L2 misses...

~35% cycles wasted, program runs ~60% slower!

22 Andrzej Nowak — CERN openlab

23

Understanding Performance Tuning

Cache miss impact graph

% of original runtime

L2 Cache miss impact (simplified)

[»)
1200 /o"

1000%+

800%

600%;

400%t

50%
20%

Memory loads
(% of cycles)

L2 cache misses (%)

Andrzej Nowak — CERN openlab

24

tab[0]++;

Thread 1

tab[0]++;

e

Understanding Performance Tuning

False sharing

MACHINE_NUKES:MEM_ORDER

Andrzej Nowak — CERN openlab

tab[1]++;

Thread 2

tab[1]++;

25

Understanding Performance Tuning

Branch prediction

Branch prediction is a process inside the CPU which

determines whether a conditional branch in the program
IS anticipated by the hardware to be taken or not

Typically: prediction based on history

The effectiveness of this hardware mechanism heavily
depends on the way the software is written

The penalty for a mispredicted branch is usually severe
(the pipelines inside the CPU get flushed and execution
stalls for a while)

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Branch prediction ratios

= The percentage of branch instructions
BRANCH INSTRUCTIONS / ALL INSTRUCTIONS

= The percentage of mispredicted branches
MISPREDICTED BRANCHES / BRANCH INSTRUCTIONS

= The number of correctly predicted branches is typically
very high (80%-+), up to 99%

YES: 80%NO 20%

do_work() calculate()

26 Andrzej Nowak — CERN openlab

27

Understanding Performance Tuning

Floating point operations

Often a significant portion of work of an application
May be accelerated using SSE (SIMD)

Related events on the Intel Core microarchitecture:
= “traditional” x87 FP ops
= Packed/Scalar single computational SIMD
= Packed/Scalar double computational SIMD
= SIMD micro-ops

Non computational SIMD instructions can also be
counted

Andrzej Nowak — CERN openlab

28

Understanding Performance Tuning

Relating to code (1)

= CPI problems
= Doing too many operations?
= Large latency instructions in the code?
= Using vector instructions?

= Cache misses, false sharing
= Memory access characteristics
= Data structures and their layout
= Does your program fit in the cache?
= Help the hardware prefetcher!

Andrzej Nowak — CERN openlab

29

Understanding Performance Tuning

Relating to code (2)

= Many mispredicted branches
= |s there a way to restructure the code?
= |s there a way to make the “ifs” more predictable?
= Rearranging conditions and loops
= Too many jumps / function calls?

= Excessive floating point operations
= Does everything need to be calculated?
= Could some results be reused?

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Relating to code (3)

= Performance optimization is a time-consuming task, so
design your program with performance in mind!

= What hardware will it run on?

= What architecture will it run on?

= |s it 64-bit compatible?

= Will it use vector computing? What width?

= Will it use multiple cores?

= Will it use multiple sockets?

= Will it use multiple nodes?

= What if any of the above changes? Is it scalable?

= Scalable designs and high performance are friends

IMPORTANT
INFORMATION

30 Andrzej Nowak — CERN openlab

31

Understanding Performance Tuning

Perfmon2 & pfmon

A real-world performance monitoring framework example

Andrzej Nowak — CERN openlab

32

Understanding Performance Tuning

Perfmon2 architecture

We use it as an example of

arobust performance
monitoring framework for
Linux

pfmon

perfmon2 — kernel part

Userspace

libpfm

Interface for perfmon

pfmon — “example”
userspace application,

perfmon2

libpfm — userspace
perfmon2 client

__

Andrzej Nowak — CERN openlab

33

Understanding Performance Tuning

Perfmon2

= Resides in the kernel
= Currently available as a kernel patch
= Very basic functionality: basically read and write

= Support for numerous architectures:
x86, x86-64, ia64, PowerPC, Cell / PS3, MIPS, SPARC

Andrzej Nowak — CERN openlab

34

Understanding Performance Tuning

Pfmon overview

= Console based interface to libpfm/perfmon2
= Provides convenient access to performance counters

= Wide range of functionality:
= Counting events
= Sampling in regular intervals
Flat profile
System wide mode
= Triggers
Different data readout “plug-ins” (modules) available

Andrzej Nowak — CERN openlab

35

Understanding Performance Tuning

Events

= Many events in the CPU can be monitored

= A comprehensive list is dependent on the CPU and can be
extracted from the manufacturer’'s manuals

= On some CPUs (i.e. Intel Core), some events have bit-
masks which limit their range, called “unit masks” or
“umasks”

= Example: instructions retired: all / only loads / only stores

= In pfmon:
= Getting a list of supported events: pfmon -1
= Getting information about an event: pfmon —i eventname

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Basic modes

= Counting
= Example: How many instructions did my application execute?

= Example: How many times did my application have to stop and wait
for data from the memory?

= Sampling
= Reporting results in “regular” intervals

= Example: every 100'000 cycles record the number of SSE operations
since the last sample

= Profiling
= Example: how many cycles are spent in which function?
= Example: how many cache misses occur in which function?

= Example: which code address is the one most frequently visited?
(looking for hotspots)

36 Andrzej Nowak — CERN openlab

37

Understanding Performance Tuning

Counting example

Specify interesting events
l.e. INSTRUCTIONS RETIRED

Build the command line
pfmon —e INSTRUCTIONS RETIRED Is /xyz

Run and obtain results
181992 INSTRUCTIONS RETIRED

TIME
pfmon 3 ¢
| A
) 1» application -2 5 result
PMU

Andrzej Nowak — CERN openlab

Step numbers don't
correspond to the list above

38

Multiplexing

Understanding Performance Tuning

Multiplexing allows monitoring of more events than there are

available counters

Specify sets of events by repeating the —e switch

Enable multiplexing by using --switch-timeout=NUM

= Pfmon will automatically switch the monitored set on the PMU after
the given timeout (in ms)

Specify separate sets by repeating the —e switch

TIME
PMU
set1 set2 set1 set2 set1 set2

y A A A A A

2 3 5 6 7 8

v v v v v v

pfmon % 10

| A
15 application -9 result

Andrzej Nowak — CERN openlab

39

Spm

Understanding Performance Tuning

Sampling example

the reference event

i.e .JUNHALTED CORE_CYCLE

Build the command line

pfmon -

smpl-per

Run and obtain results (next page)

NHALTED

ref), INSTRUCTIONS_RETIRED

E CYCLES JNSTRUCTIONS RETIRED --long-
-module=compact /bin/lIs

TIME
PMU w/ reference event

A A A A

2 3 4 5

\ 4 \ 4 v \ 4

pfmon

1 . —"
Ly application N

Andrzej Nowak — CERN openlab

>

Step numbers don't
correspond to the list above

5

result

Understanding Performance Tuning

Profiling example

1. Specify the reference event
l.,e. UNHALTED CORE_CYCLES
2. Build the command line
pfmon -e UNHALTED CORE_CYCLES --long-smpl-periods=10000 --resolve-

addresses --smpl-per-function /bin/ls

3. Run and obtain results (next page)

PMU <« 2) 1
w/ reference event
application,
BT shared libraries
Instrgctlon <« 2 <« 3
Pointer

j T—(4: symbol inforrnation)—T

result Step numbers don't
correspond to the list above

40 Andrzej Nowak — CERN openlab

41

Understanding Performance Tuning

More advanced performance monitoring
concepts

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Following execution and threading chains

= You might need to monitor
across numerous types of
execution splits

= pthreads
= forks
= exec calls

= Pfmon options:
—--follow-all
—--follow-fork
--follow-pthread

—--Ffol low-exec

42 Andrzej Nowak — CERN openlab

pfmon

Monitored domain

Parent

Child
process (2)

Child
process (3)

Child
process 4

Process (1) N

Resultl

Result2

Result3

Result4

43

Understanding Performance Tuning

Results aggregation

= Results from multiple
threads of execution can
be merged into one

= Pfmon option:

—--aggregate-results

= Collects results from all
monitored executables

Andrzej Nowak — CERN openlab

Monitored domain

Parent

pfmon

process X

Child
process

Child
process

Child
process

Combined session
result

44

Understanding Performance Tuning

Triggers

A concept which enables
monitoring to start or stop
automatically

Trigger types:
= Code
= Data

A symbol name...
= |.e. “foobar”

...0r an address
= |.e. 0x8103b91e

Limitation: in pfmon symbol names are
available only within the first binary

Andrzej Nowak — CERN openlab

B
e
e

Code

45

Understanding Performance Tuning

System wide monitoring

In system wide mode all processes are monitored on a specific set
of CPUs

= |n pfmon root access is not needed
= Pfmon switch: --system-wide

Useful pfmon options:
= Timeout (-t, results reported in regular intervals)
= Kernel mode (explained on the next slide)
= Aggregation (--aggregate-results)
= Multiplexing (--switch-timeout)

Both counting and profiling are possible

Used at CERN in a pilot project w/ pfmon in multiplexing mode
= Running in the background on some batch machines

Andrzej Nowak — CERN openlab

Understanding Performance Tuning

Monitoring levels

= 4 privilege levels:
= Userlevel (3) — default (-u)
= Kernel level (0) — useful for kernel debugging in system
wide mode (-k)
= Other levels: 1, 2

Kernel level monitoring example in pfmon (system wide):
cnt %self %cum code addr symbol
448 35.50% 35.50% OxXFFFFFFFF8103b91e @ do softirg+0Ox45<kernel> (idle,0)
278 22.03% 57.53% OxFFFFFFFF8100a47b mwait idle+0Ox3f<kernel> (idle,0)
77 6.10% 63.63% OXFFFFFFFF8127e229 spin_unlock 1rg+0x9<kernel> (idle,0)

46 Andrzej Nowak — CERN openlab

Q&A

&

CERN

openlab

Understanding Performance Tuning

BACKUP

= Resources:

http://cern.ch/openlab

http://sf.net/projects/perfmon2
http://perfmon2.sourceforge.net (documentation)
http://perfmon2.sourceforge.net/pfmon_usersguide.html
http://www.intel.com (manuals)
http://cern.ch/andrzej.nowak (gpfmon)
http://Itp.sourceforge.net/tooltable.php (Linux Test Tools)

= |ntel Software Products:
= \VTune, Thread checker, Thread Profiler: http://intel.com/software
= PTU: http://softwarecommunity.intel.com/articles/eng/1437.htm

= HP Caliper
= http://h21007.www2.hp.com/portal/site/dspp

48 Andrzej Nowak — CERN openlab

http://intel.com/software
http://softwarecommunity.intel.com/articles/eng/1437.htm

49

Understanding Performance Tuning

BACKUP - enabling different modes In
pfmon

Different modes are triggered by the presence of certain
command line switches

Counting
default mode

Sampling

—-smpl-module=compact, --smpl-module=detailed

Profiling
—-long-smpl-period=NUM

Andrzej Nowak — CERN openlab

50

Understanding Performance Tuning

BACKUP — basic pfmon options

Event specification with umasks
—e INST_RETIRED:STORES:LOADS

Follow all execution splits

—Follow-all

System wide mode

——system-wide

Displaying a header with useful information

—with-header

Aggregating results

——aggregate-results

Andrzej Nowak — CERN openlab

51

Understanding Performance Tuning

BACKUP — output formatting

EU counter format (--eu-c)
1.567.123 instead of 1567123

US counter format (--us-c)
1,567,123 instead of 1567123

Hex counter format (--hex-c)
Oxdeadbeef instead of 3735928559

Show execution time (--show-time)
real 0hOOmM00.252s user O0hOOMO0.000s sys O0h0O0OmMO00.000s

Suppress monitored command output (--no-cmd-output)

Andrzej Nowak — CERN openlab

52

Understanding Performance Tuning

BACKUP — advanced pfmon options

Specifying triggers
—trigger-code-start-address=...
—trigger-code-stop-address=...
—trigger-data-start-address=...
—trigger-data-start-address=...

Multiplexing

—e EVENT1,EVENTZ2,.. —e EVENTa,EVENTDb,.. ——switch-
timeout=NUM

Andrzej Nowak — CERN openlab

53

BACKUP — pfmon sampling/profiling
options

Specifying sampling periods (the unit is reference event

occurrences)
—long-smpl-period=NUM
—-short-smpl-period=NUM

Resetting counters back to zero when sampling
—reset-non-smpl-periods

Limit the sampling entries buffer (useful!)
—smpl-entries=NUM

Translating addresses into symbol names

—resolve-addresses

Show results per function rather than per address
—smpl-per-function

Andrzej Nowak — CERN openlab

#
#
#
#
#
#
#
#
#
#
#

1
0
1
2
3
4

54

Understanding Performance Tuning

BACKUP - example sampling results (pfmon)

description of columns:

column 1: entry number

column 2: process id

column 3: thread id

column 4: cpu number

column 5: iInstruction pointer
column 6: unigque timestamp
column 7: overflowed PMD index
column 8: event set

column 9:

initial value of overflowed PMD (sampling period)

followed by optional sampled PMD values in command line order

2 3
32442 32442

4 S 6
2
32442 32442 2
2
2
2

0x3061230d6a 0x0004d5f49c2a8e57
0x3061292980 0x0004d5f49c2b4851
0x3061226363 0x0004d5f49c2c04dc
0x3061010159 0x0004d5f49c2c39ch
0x306126b5Ff0 0x0004d5f49c2c9alc

32442 32442
32442 32442
32442 32442

Andrzej Nowak — CERN openlab

7
17
17
17
17
17

8
o)
0]
0]
0]
0]

9 10
-26670 0x556
-26670 0xd66
-26670 Oxlaaa
-26670 0x6942
-26670 Ox171c

Understanding Performance Tuning

BACKUP: gpfmon — a graphical interface for pfmon

<kl SN 4

Disconnect Attach Execute

Quit

FREvents Ff Derived events | & Scenarios | 72 Options Output Results @Analvsis ﬁcranhs ‘
Monitor Ewvent name Event parameters:
) UNHALTED CORE CYCLES Mame: LAST_LEVEL_CACHE_MISSES
(1 {INSTRUCTIONS_RETIRED Code: Ox412e
] UNHALTED_REFERENCE_CYCLES Counters: Set([0, 1])
1 LAST_LEVEL_CACHE_REFERENCES Description: = Details...
- LAST LEVEL CACHE_MISSES count each cache miss condition for refere_nces to
the last level cache. The event count may include
[| BRANCH_INSTRUCTIOMNS_RETIRED speculation, but excludes cache line fills due to
™ hardware prefetch. Alias to event
MISPREDICTED_BRANCH_RETIRED L2_ROSTS 'SELF_DEMAND_|_STATE
[| RS_UOQPS_DISPATCHED _CYCLES
[| RS_UQPS_DISPATCHED Umasks:
[] LOAD_BLOCK Pebs: No
D SB_DRAIN_CYCLES Selected events:
[| STORE_BLOCK = Additional information:
| SEGMENT_REG_LOADS Selected events:
UNHALTED _CORE_CYCLES [17]
[| SSE_PRE_EXEC LAST_LEVEL_CACHE_REFERENCES [1]
T ————— | LAST _LEVEL_CACHE_MISSES [0]
Used counters: 0, 17, 1,
Filter: | All v

55 Andrzej Nowak — CERN openlab

56

Understanding Performance Tuning

BACKUP - example profiling results (pfmon)

cnt
80

53
32
20
19
18
17
13

Wsel T

20.

13.
-33%
-21%
-95%
-69%
-43%
-39%

W s S~ b OO

83%

80%

20.

34.
42 .
48 .
53.
S7.
62.
65.

%cum
83%

64%
97%
18%
12%
81%
24%
62%

addr symbol

Ox...

0x...
0x...
0x...
0x...
0x...
0x...
0x...

do lookup x</11b64/1d-2.3.4_s0>

do page_fTault<kernel>

_init</bin/ls>

__GI_strilen</1ib64/tls/libc-2.3.4_s0>
_int_malloc</li1b64/tls/libc-2.3.4_.s0>
strcmp</11b64/1d-2.3.4_s0>

__G1___ strcoll_I</1i1b64/tls/libc-2.3.4_s0>
__GI1_memcpy</11b64/tls/libc-2.3.4_so0>

Andrzej Nowak — CERN openlab

	Computer Architecture and Performance Tuning
	Contents
	Performance tuning in general
	Rationale
	Improving application performance
	The free ride is over
	The situation today
	Performance tuning
	Performance tuning levels - examples
	Popular performance tuning software (1)
	Popular performance tuning software (2)
	Platform tuning and debugging
	Common sense tips
	Common performance figures
	Performance monitoring in hardware
	Basic information about your program �Recap
	Advanced information about your program
	Derived events
	A word for the future
	The CPI figure and its meaning
	Cache misses
	Cache miss demo
	Cache miss impact graph
	False sharing
	Branch prediction
	Branch prediction ratios
	Floating point operations
	Relating to code (1)
	Relating to code (2)
	Relating to code (3)
	Perfmon2 & pfmon
	Perfmon2 architecture
	Perfmon2
	Pfmon overview
	Events
	Basic modes
	Counting example
	Multiplexing
	Sampling example
	Profiling example
	More advanced performance monitoring concepts
	Following execution and threading chains
	Results aggregation
	Triggers
	System wide monitoring
	Monitoring levels
	Slide Number 47
	BACKUP
	BACKUP - enabling different modes in pfmon
	BACKUP – basic pfmon options
	BACKUP – output formatting
	BACKUP – advanced pfmon options
	BACKUP – pfmon sampling/profiling options
	BACKUP - example sampling results (pfmon)
	BACKUP: gpfmon – a graphical interface for pfmon
	BACKUP - example profiling results (pfmon)

