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Understanding Performance Tuning

Contents

. Software performance tuning in general
. Drilling down on performance figures

. Perfmon2 as an example of a performance monitoring
framework

. Pfmon abilities and usage

In this talk, we focus on x86_64 processors (Intel Core
and friends, AMD Athlon/Barcelona, etc)
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Performance tuning in general
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Understanding Performance Tuning

Rationale

1% gained in performance can be equal to $1min of savings
Better performance = money
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Understanding Performance Tuning

Improving application performance

= Question #1 — “Why is it SOOOO0OO0O SLOW?”

= Upgrading hardware
= Removing common bottlenecks
= New CPU, new hard drive, more memory
= New, new, new...

= Replacing whole software components
= Replacing shared or external libraries

= Improving existing code

= Performance monitoring will give you the answer

= |t allows you to find the things you could change in your setup to
Improve performance
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The situation today

In short, analogy to cars:

= Newly produced cars can take more and more people but drive only
40 mph. How do you find more passengers and how do you set up
the route?

Multi-core is prevalent
= You have 2 cores in your iPod!
= Several “cores” or “processors” in your Playstation3, XBOX 360

= How do you create programs which run well in many “copies”
(threads)?

24 “processors” inside a computer today
64 by the end of the year

The way you write software will become completely different!
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Performance tuning

Why tune performance?
= To get more speed and/or throughput...

= ...or to just keep up with the hardware or previous
performance figures

= Processor clock frequencies don’t go up anymore! No
free meals since the millennium

Who needs performance tuning?

Who can do performance tuning?
= Some bottlenecks are really easy to find...
= ... but performance tuning can be VERY tricky

Performance tuning is a lot like tuning a car... but you
can do well with only one wrench and you don’t need all
those expensive parts
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Performance tuning levels - examples

Source code
= Function calls _ _
= Excessive calls of a function or a group of functions

= Blocking (i.e. I/O)

= Loops within your program
= |terating over sparse/long structures

= General characteristics of your program
= Excessive memory allocations and copying, excessive calculations,
checks, malformed conditions, etc.

Operating system
= Running daemons, limits, co-existing processes, I/O, libraries

Hardware

3 tI?F]uy new, better hardware... not always possible, even if the money is
ere

Hardware counter level
= Can relate to all of the above... if well implemented
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Popular performance tuning software (1)

gprof
= Flat profiles, call lists

= Recompilation needed

oprofile
= Flat profiles
= Kernel driver needed

PIN, Valgrind
= [nstrumentation / Synthetic software CPU

= Simulate such characteristics as cache misses and branch
mispredictions, memory space usage, function call relationships

pfmon / perfmon2
= Low level access to counters
= No recompilation needed

= Kernel patch needed today, but will be a part of the standard Linux
kernel

Andrzej Nowak — CERN openlab
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Popular performance tuning software (2)

Intel products:

= VTune, PTU — very powerful
= Thread Checker, Thread Profiler — for multithreading

= VTune In Linux requires a precompiled kernel module
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Understanding Performance Tuning

Platform tuning and debugging

Sometimes tuning the application is not enough, or not
the right thing to do

Traditional tools: iostat, netstat, vmstat, pmap
More advanced tools: strace, Itrace, SystemTap, utrace

Great paper from IBM: “Linux Performance and Tuning
Guidelines”

= Quote: “IBM has embraced Linux”
= http://www.redbooks.ibm.com/abstracts/redp4285.html

Andrzej Nowak — CERN openlab




13

Common sense tips

Know vour system

Understanding Performance Tuning

Look for bottlenecks and understand them
= Use and understand the tools

Change one thing at a time
= Will other components be able to keep up with this

change?

Keep a good log of your activities and conditions

Performance tuning Is an iterative process

®

Andrzej Nowak — CERN openlab
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Common performance figures

And how to interpret them
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Performance monitoring in hardware

= Most modern CPUs are able to provide real-time
statistics concerning executed instructions...

= ...viaaPerformance Monitoring Unit (PMU)

= The PMU is spying in real time on your application! (and
everything else that goes through the CPU)

= Limited number of “sentries” (counters) available, but
they are versatile

= Recorded occurrences are called events

= Typically on modern Intel CPUs:
= 2-4 universal counters (#0, #1 (#2, #3))

= 3 specialized counters (#16, #17, #18) IMPORTANT
= Additional 8 “uncore” counters INFORMATION

Andrzej Nowak — CERN openlab
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Basic information about your program
Recap

= The amount of:
= |nstructions executed
= processor cycles spent on the program
= transactions on the bus

= The amount/percentage of:
= memory loads and stores
= floating point operations
= vector operations (SIMD)
= pranch instructions
= cache misses

16 Andrzej Nowak — CERN openlab
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Advanced information about your program

= The amount and type of:
" micro-ops executed
= SIMD instructions executed
= resource stalls within the CPU

= Cache access characteristics
= A rich set on Intel Core CPUs
= Demand

= Requests (missed / hit / total / exclusive or shared / store
or read)

= Lines modified / evicted / prefetched
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Derived events

= Too much information available?

= Low level and fine grained events can be combined to
produce ratios (so called “derived events™)

= Extensive information:

= |Intel Manual 248966-016 “Intel 64 and |A-32
Architectures Optimization Reference Manual”

= AMD CPU-specific manuals, i.e. #32559 “BIOS and

Kernel Developer’'s Guide for AMD NPT Family OFh
Processors”
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A word for the future

Mapping performance monitoring data onto your source
code and environment requires care and experience
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The CPI figure and its meaning
CPIl — cycles per instruction

= Thanks to multiple execution ports (superscalar
architecture), more than one instruction can be
executed per cycle

= |n Intel Core 2 CPUs, CPI can go as low as 0.25
= 4 instructions per cycle

= CPIl above 1.0 is not impressive

The ratio of the number of CPU cycles spent on a
program to the number of program instructions
retired by the CPU

CYCLES /INSTRUCTIONS

This figure illustrates the CPU usage efficiency,
but, like all ratios, can be tricky to interpret
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Cache misses

If the requested item is not in the polled
cache, the next level has to be consulted
(cache miss)

Significant impact on performance

Formula;

LAST LEVEL CACHE MISSES / LAST
LEVEL CACHE REFERENCES

Tips:
= A L2 cache hit ratio below 95% is
considered to be catastrophic! (=5% miss)

Data request

L1

L2

= Usually the figure should be above 99%

= The overall cache miss rate might be low
(misses / total instructions), but the
resource stalls figure might be high;
always check the cache miss percentage

Andrzej Nowak — CERN openlab
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Cache miss demo

. 50 cycles of work (incl. L1 consultations/misses)

50 cycles of work with one L2 cache miss

50 cycles of no work

. . profiled

section

Assuming 20% of the instructions are loads and 3% of L2 misses...

~35% cycles wasted, program runs ~60% slower!
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Cache miss impact graph

% of original runtime

L2 Cache miss impact (simplified)
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tab[0]++;

Thread 1

tab[0]++;

e

Understanding Performance Tuning

False sharing

MACHINE_NUKES:MEM_ORDER

Andrzej Nowak — CERN openlab
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Understanding Performance Tuning

Branch prediction

Branch prediction is a process inside the CPU which

determines whether a conditional branch in the program
IS anticipated by the hardware to be taken or not

Typically: prediction based on history

The effectiveness of this hardware mechanism heavily
depends on the way the software is written

The penalty for a mispredicted branch is usually severe
(the pipelines inside the CPU get flushed and execution
stalls for a while)

Andrzej Nowak — CERN openlab
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Branch prediction ratios

= The percentage of branch instructions
BRANCH INSTRUCTIONS / ALL INSTRUCTIONS

= The percentage of mispredicted branches
MISPREDICTED BRANCHES / BRANCH INSTRUCTIONS

= The number of correctly predicted branches is typically
very high (80%-+), up to 99%

YES: 80%NO 20%

do_work() calculate()

26 Andrzej Nowak — CERN openlab
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Floating point operations

Often a significant portion of work of an application
May be accelerated using SSE (SIMD)

Related events on the Intel Core microarchitecture:
= “traditional” x87 FP ops
= Packed/Scalar single computational SIMD
= Packed/Scalar double computational SIMD
= SIMD micro-ops

Non computational SIMD instructions can also be
counted

Andrzej Nowak — CERN openlab
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Relating to code (1)

= CPI problems
= Doing too many operations?
= Large latency instructions in the code?
= Using vector instructions?

= Cache misses, false sharing
= Memory access characteristics
= Data structures and their layout
= Does your program fit in the cache?
= Help the hardware prefetcher!

Andrzej Nowak — CERN openlab
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Relating to code (2)

= Many mispredicted branches
= |s there a way to restructure the code?
= |s there a way to make the “ifs” more predictable?
= Rearranging conditions and loops
= Too many jumps / function calls?

= Excessive floating point operations
= Does everything need to be calculated?
= Could some results be reused?
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Relating to code (3)

= Performance optimization is a time-consuming task, so
design your program with performance in mind!

= What hardware will it run on?

= What architecture will it run on?

= |s it 64-bit compatible?

= Will it use vector computing? What width?

= Will it use multiple cores?

= Will it use multiple sockets?

= Will it use multiple nodes?

= What if any of the above changes? Is it scalable?

= Scalable designs and high performance are friends

IMPORTANT
INFORMATION

30 Andrzej Nowak — CERN openlab
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Perfmon2 & pfmon

A real-world performance monitoring framework example

Andrzej Nowak — CERN openlab
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Perfmon2 architecture

We use it as an example of

arobust performance
monitoring framework for
Linux

pfmon

perfmon2 — kernel part

Userspace

libpfm

Interface for perfmon

pfmon — “example”
userspace application,

perfmon2

libpfm — userspace
perfmon2 client

____________________________________________________

Andrzej Nowak — CERN openlab
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Perfmon2

= Resides in the kernel
= Currently available as a kernel patch
= Very basic functionality: basically read and write

= Support for numerous architectures:
x86, x86-64, ia64, PowerPC, Cell / PS3, MIPS, SPARC

Andrzej Nowak — CERN openlab
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Pfmon overview

= Console based interface to libpfm/perfmon2
= Provides convenient access to performance counters

= Wide range of functionality:
= Counting events
= Sampling in regular intervals
Flat profile
System wide mode
= Triggers
Different data readout “plug-ins” (modules) available
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Events

= Many events in the CPU can be monitored

= A comprehensive list is dependent on the CPU and can be
extracted from the manufacturer’'s manuals

= On some CPUs (i.e. Intel Core), some events have bit-
masks which limit their range, called “unit masks” or
“umasks”

= Example: instructions retired: all / only loads / only stores

= In pfmon:
= Getting a list of supported events: pfmon -1
= Getting information about an event: pfmon —i eventname

Andrzej Nowak — CERN openlab
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Basic modes

= Counting
= Example: How many instructions did my application execute?

= Example: How many times did my application have to stop and wait
for data from the memory?

= Sampling
= Reporting results in “regular” intervals

= Example: every 100'000 cycles record the number of SSE operations
since the last sample

= Profiling
= Example: how many cycles are spent in which function?
= Example: how many cache misses occur in which function?

= Example: which code address is the one most frequently visited?
(looking for hotspots)
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Counting example

Specify interesting events
l.e. INSTRUCTIONS RETIRED

Build the command line
pfmon —e INSTRUCTIONS RETIRED Is /xyz

Run and obtain results
181992 INSTRUCTIONS RETIRED

TIME
pfmon 3 ¢
| A
) 1» application -2 5 result
PMU

Andrzej Nowak — CERN openlab
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Multiplexing

Understanding Performance Tuning

Multiplexing allows monitoring of more events than there are

available counters

Specify sets of events by repeating the —e switch

Enable multiplexing by using --switch-timeout=NUM

= Pfmon will automatically switch the monitored set on the PMU after
the given timeout (in ms)

Specify separate sets by repeating the —e switch

TIME
PMU
set1 set2 set1 set2 set1 set2

y A A A A A

2 3 5 6 7 8

v v v v v v

pfmon % 10

| A
15 application -9 result

Andrzej Nowak — CERN openlab




39

Spm

Understanding Performance Tuning

Sampling example

the reference event

i.e .JUNHALTED CORE_CYCLE

Build the command line

pfmon -

smpl-per

Run and obtain results (next page)

NHALTED

ref), INSTRUCTIONS_RETIRED

E CYCLES JNSTRUCTIONS RETIRED --long-
-module=compact /bin/lIs

TIME
PMU w/ reference event

A A A A

2 3 4 5

\ 4 \ 4 v \ 4

pfmon

1 . —"
Ly application N

Andrzej Nowak — CERN openlab
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Profiling example

1. Specify the reference event
l.,e. UNHALTED CORE_CYCLES
2. Build the command line
pfmon -e UNHALTED CORE_CYCLES --long-smpl-periods=10000 --resolve-

addresses --smpl-per-function /bin/ls

3. Run and obtain results (next page)

PMU <« 2 ) 1
w/ reference event
application,
BT shared libraries
Instrgctlon <« 2 <« 3
Pointer

j T—(4: symbol inforrnation)—T

result Step numbers don't
correspond to the list above
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More advanced performance monitoring
concepts

Andrzej Nowak — CERN openlab
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Following execution and threading chains

= You might need to monitor
across numerous types of
execution splits

= pthreads
= forks
= exec calls

= Pfmon options:
—--follow-all
—--follow-fork
--follow-pthread

—--Ffol low-exec

42 Andrzej Nowak — CERN openlab

pfmon

Monitored domain

Parent

Child
process (2)

Child
process (3)

Child
process 4

Process (1) N

Resultl

Result2

Result3

Result4




43

Understanding Performance Tuning

Results aggregation

= Results from multiple
threads of execution can
be merged into one

= Pfmon option:

—--aggregate-results

= Collects results from all
monitored executables

Andrzej Nowak — CERN openlab
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Triggers

A concept which enables
monitoring to start or stop
automatically

Trigger types:
= Code
= Data

A symbol name...
= |.e. “foobar”

...0r an address
= |.e. 0x8103b91e

Limitation: in pfmon symbol names are
available only within the first binary

Andrzej Nowak — CERN openlab
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System wide monitoring

In system wide mode all processes are monitored on a specific set
of CPUs

= |n pfmon root access is not needed
= Pfmon switch: --system-wide

Useful pfmon options:
= Timeout (-t, results reported in regular intervals)
= Kernel mode (explained on the next slide)
= Aggregation (--aggregate-results)
= Multiplexing (--switch-timeout)

Both counting and profiling are possible

Used at CERN in a pilot project w/ pfmon in multiplexing mode
= Running in the background on some batch machines

Andrzej Nowak — CERN openlab
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Monitoring levels

= 4 privilege levels:
= Userlevel (3) — default (-u)
= Kernel level (0) — useful for kernel debugging in system
wide mode (-k)
= Other levels: 1, 2

Kernel level monitoring example in pfmon (system wide):
cnt %self %cum code addr symbol
448 35.50% 35.50% OxXFFFFFFFF8103b91e @ do softirg+0Ox45<kernel> (idle,0)
278 22.03% 57.53% OxFFFFFFFF8100a47b mwait idle+0Ox3f<kernel> (idle,0)
77 6.10% 63.63% OXFFFFFFFF8127e229 spin_unlock 1rg+0x9<kernel> (idle,0)

46 Andrzej Nowak — CERN openlab
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BACKUP

= Resources:

http://cern.ch/openlab

http://sf.net/projects/perfmon2
http://perfmon2.sourceforge.net (documentation)
http://perfmon2.sourceforge.net/pfmon_usersguide.html
http://www.intel.com (manuals)
http://cern.ch/andrzej.nowak (gpfmon)
http://Itp.sourceforge.net/tooltable.php (Linux Test Tools)

= |ntel Software Products:
= \VTune, Thread checker, Thread Profiler: http://intel.com/software
= PTU: http://softwarecommunity.intel.com/articles/eng/1437.htm

= HP Caliper
= http://h21007.www2.hp.com/portal/site/dspp

48 Andrzej Nowak — CERN openlab
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BACKUP - enabling different modes In
pfmon

Different modes are triggered by the presence of certain
command line switches

Counting
default mode

Sampling

—-smpl-module=compact, --smpl-module=detailed

Profiling
—-long-smpl-period=NUM

Andrzej Nowak — CERN openlab
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BACKUP — basic pfmon options

Event specification with umasks
—e INST_RETIRED:STORES:LOADS

Follow all execution splits

—Follow-all

System wide mode

——system-wide

Displaying a header with useful information

—with-header

Aggregating results

——aggregate-results

Andrzej Nowak — CERN openlab
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BACKUP — output formatting

EU counter format (--eu-c)
1.567.123 instead of 1567123

US counter format (--us-c)
1,567,123 instead of 1567123

Hex counter format (--hex-c)
Oxdeadbeef instead of 3735928559

Show execution time (--show-time)
real 0hOOmM00.252s user O0hOOMO0.000s sys O0h0O0OmMO00.000s

Suppress monitored command output (--no-cmd-output)

Andrzej Nowak — CERN openlab
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BACKUP — advanced pfmon options

Specifying triggers
—trigger-code-start-address=...
—trigger-code-stop-address=...
—trigger-data-start-address=...
—trigger-data-start-address=...

Multiplexing

—e EVENT1,EVENTZ2,.. —e EVENTa,EVENTDb,.. ——switch-
timeout=NUM

Andrzej Nowak — CERN openlab
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BACKUP — pfmon sampling/profiling
options

Specifying sampling periods (the unit is reference event

occurrences)
—long-smpl-period=NUM
—-short-smpl-period=NUM

Resetting counters back to zero when sampling
—reset-non-smpl-periods

Limit the sampling entries buffer (useful!)
—smpl-entries=NUM

Translating addresses into symbol names

—resolve-addresses

Show results per function rather than per address
—smpl-per-function

Andrzej Nowak — CERN openlab
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BACKUP - example sampling results (pfmon)

description of columns:

column 1: entry number

column 2: process id

column 3: thread id

column 4: cpu number

column 5: iInstruction pointer
column 6: unigque timestamp
column 7: overflowed PMD index
column 8: event set

column 9:

initial value of overflowed PMD (sampling period)

followed by optional sampled PMD values in command line order

2 3
32442 32442

4 S 6
2
32442 32442 2
2
2
2

0x3061230d6a 0x0004d5f49c2a8e57
0x3061292980 0x0004d5f49c2b4851
0x3061226363 0x0004d5f49c2c04dc
0x3061010159 0x0004d5f49c2c39ch
0x306126b5Ff0 0x0004d5f49c2c9alc

32442 32442
32442 32442
32442 32442

Andrzej Nowak — CERN openlab
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BACKUP: gpfmon — a graphical interface for pfmon

<kl SN 4

Disconnect Attach Execute

Quit

FREvents Ff Derived events | & Scenarios | 72 Options Output Results @Analvsis ﬁcranhs ‘
Monitor Ewvent name Event parameters:
) UNHALTED CORE CYCLES Mame: LAST_LEVEL_CACHE_MISSES
(1 {INSTRUCTIONS_RETIRED Code: Ox412e
] UNHALTED_REFERENCE_CYCLES Counters: Set([0, 1])
1 LAST_LEVEL_CACHE_REFERENCES Description: = Details...
- LAST LEVEL CACHE_MISSES count each cache miss condition for refere_nces to
the last level cache. The event count may include
[ | BRANCH_INSTRUCTIOMNS_RETIRED speculation, but excludes cache line fills due to
™ hardware prefetch. Alias to event
MISPREDICTED_BRANCH_RETIRED L2_ROSTS 'SELF_DEMAND_|_STATE
[ | RS_UOQPS_DISPATCHED _CYCLES
[ | RS_UQPS_DISPATCHED Umasks:
[ ] LOAD_BLOCK Pebs: No
D SB_DRAIN_CYCLES Selected events:
[ | STORE_BLOCK = Additional information:
| SEGMENT_REG_LOADS Selected events:
UNHALTED _CORE_CYCLES [17]
[ | SSE_PRE_EXEC LAST_LEVEL_CACHE_REFERENCES [1]
T ————— | LAST _LEVEL_CACHE_MISSES [0]
Used counters: 0, 17, 1,
Filter: | All v

55 Andrzej Nowak — CERN openlab




56

Understanding Performance Tuning

BACKUP - example profiling results (pfmon)

cnt
80

53
32
20
19
18
17
13

Wsel T

20.

13.
-33%
-21%
-95%
-69%
-43%
-39%

W s S~ b OO

83%

80%

20.

34.
42 .
48 .
53.
S7.
62.
65.

%cum
83%

64%
97%
18%
12%
81%
24%
62%

addr symbol

Ox...

0x...
0x...
0x...
0x...
0x...
0x...
0x...

do lookup x</11b64/1d-2.3.4_s0>

do page_fTault<kernel>

_init</bin/ls>

__GI_strilen</1ib64/tls/libc-2.3.4_s0>
_int_malloc</li1b64/tls/libc-2.3.4_.s0>
strcmp</11b64/1d-2.3.4_s0>

__G1___ strcoll_I</1i1b64/tls/libc-2.3.4_s0>
__GI1_memcpy</11b64/tls/libc-2.3.4_so0>
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