

FLUKA Beginner's Course

Aim of the exercise:

- 1- Discover biasing power
- 2- Experience region importance
- 3- Use of cylindrical mesh USRBIN
- 4- Plot USRBIN in the Geometry Editor
- 5- Use of Conditional Directives

Exercise: Importance biasing Start from the solution of ex4 (Copy both .inp and .flair files).:

mkdir ex8; cp ex4/ex.* ex8; cd ex8

Geometry modifications:

create a concentric shielding

e.g.:

Add 1 RCC surrounding the target

(R=10cm ; Zmin=-10cm ; Zmax=30cm)

- Add 6 ZCC (radius = n x 40cm)
- Add 2 XYP planes

(z=-100cm and z=150cm)

Add 1 XZP plane (y=0)

Materials

- □ Shielding will be made of concrete
- Concrete is not a FLUKA predefined material
- It has to be defined

Concrete:	(mass fract	ion)	
Hydrogen	0.01	Aluminum	0.034
Carbon	0.001	Silicon	0.337
Oxygen	0.529	Potassium	0.013
Sodium	0.016	Calcium	0.044
Magnesium	0.002	Iron	0.014

Density: 2.42g/cm³

- Assign it to all the shielding region
 - -Try doing it with one single card

□ Set the importance to 1, for all regions and particles

- □ For regions having y>0 set importance to 2^n (n =#layer)
- □ For regions having y < 0 set importance to $1/2^n$ (n =#layer)
- Enclose biasing within a #if Flag_BIAS statement

(to be activated through #define)

Scoring

Add one region independent scoring for neutrons (USRBIN)

- $_{\rm \circ}$ To span over the whole geometry
- To have sufficient bins
- To have cylindrical coordinates [i.e. **R-Phi-Z**]
- Unformatted output on unit 54

Run

- 2 separate runs, w/ and w/o biasing (do not overwrite results)
- □ 5 cycles, 10000 primaries each

Plot

- USRBIN results in Flair
- Region importance in the Geometry Editor
- □ USRBIN results in the Geometry Editor

How to display region importance in the Geometry Editor

Exercise 10: Importance biasing - Results No BIAS

Region Importance Biasing

Neutron fluence [n/cm² primary]