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Introduction to the chapter

The (eternal) issue

Urgent need of a common language to be used by experiments to communicate their

results and by theory to interpret them

Chapter II
overview of phenomenological tools and frameworks used for
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The flow of the chapter

1.1 κ-framework: its use and limits → this talk

y
1.2 Fiducial and simplified template cross sections → see Davide Melini’s talk

alternative fiducial cross sections: tools rising againts issues of phase space definitions

(detector vs theory, detector vs detector)y
1.3 Tools and phenomenological Lagrangian → see Michele Boggia’s talk

available tools to parametrise Beyond Standard Model (BSM) effects:

phenomenological Lagrangians in generators and precision challengesy
1.4 Effective field theories (EFT) → see Raquel Gomez-Ambrosio’s talk

overview of the EFT to describe deviations from Standard Model (SM)y
1.5 Pseudoobservables (POs) for the LHC → see Agnieszka Ilnicka’s talk

potential of POs, of which the κ-framework is a subset, and relevance for EFT to show

and interpret experimental results

Giulia Gonella - kappa-framework 16.05.2017 5 / 25



The flow of the chapter

1.1 κ-framework: its use and limits → this talk

y
1.2 Fiducial and simplified template cross sections → see Davide Melini’s talk

alternative fiducial cross sections: tools rising againts issues of phase space definitions

(detector vs theory, detector vs detector)

y
1.3 Tools and phenomenological Lagrangian → see Michele Boggia’s talk

available tools to parametrise Beyond Standard Model (BSM) effects:

phenomenological Lagrangians in generators and precision challengesy
1.4 Effective field theories (EFT) → see Raquel Gomez-Ambrosio’s talk

overview of the EFT to describe deviations from Standard Model (SM)y
1.5 Pseudoobservables (POs) for the LHC → see Agnieszka Ilnicka’s talk

potential of POs, of which the κ-framework is a subset, and relevance for EFT to show

and interpret experimental results

Giulia Gonella - kappa-framework 16.05.2017 5 / 25



The flow of the chapter

1.1 κ-framework: its use and limits → this talk

y
1.2 Fiducial and simplified template cross sections → see Davide Melini’s talk

alternative fiducial cross sections: tools rising againts issues of phase space definitions

(detector vs theory, detector vs detector)y
1.3 Tools and phenomenological Lagrangian → see Michele Boggia’s talk

available tools to parametrise Beyond Standard Model (BSM) effects:

phenomenological Lagrangians in generators and precision challenges

y
1.4 Effective field theories (EFT) → see Raquel Gomez-Ambrosio’s talk

overview of the EFT to describe deviations from Standard Model (SM)y
1.5 Pseudoobservables (POs) for the LHC → see Agnieszka Ilnicka’s talk

potential of POs, of which the κ-framework is a subset, and relevance for EFT to show

and interpret experimental results

Giulia Gonella - kappa-framework 16.05.2017 5 / 25



The flow of the chapter

1.1 κ-framework: its use and limits → this talk

y
1.2 Fiducial and simplified template cross sections → see Davide Melini’s talk

alternative fiducial cross sections: tools rising againts issues of phase space definitions

(detector vs theory, detector vs detector)y
1.3 Tools and phenomenological Lagrangian → see Michele Boggia’s talk

available tools to parametrise Beyond Standard Model (BSM) effects:

phenomenological Lagrangians in generators and precision challengesy
1.4 Effective field theories (EFT) → see Raquel Gomez-Ambrosio’s talk

overview of the EFT to describe deviations from Standard Model (SM)

y
1.5 Pseudoobservables (POs) for the LHC → see Agnieszka Ilnicka’s talk

potential of POs, of which the κ-framework is a subset, and relevance for EFT to show

and interpret experimental results

Giulia Gonella - kappa-framework 16.05.2017 5 / 25



The flow of the chapter

1.1 κ-framework: its use and limits → this talk

y
1.2 Fiducial and simplified template cross sections → see Davide Melini’s talk

alternative fiducial cross sections: tools rising againts issues of phase space definitions

(detector vs theory, detector vs detector)y
1.3 Tools and phenomenological Lagrangian → see Michele Boggia’s talk

available tools to parametrise Beyond Standard Model (BSM) effects:

phenomenological Lagrangians in generators and precision challengesy
1.4 Effective field theories (EFT) → see Raquel Gomez-Ambrosio’s talk

overview of the EFT to describe deviations from Standard Model (SM)y
1.5 Pseudoobservables (POs) for the LHC → see Agnieszka Ilnicka’s talk

potential of POs, of which the κ-framework is a subset, and relevance for EFT to show

and interpret experimental results

Giulia Gonella - kappa-framework 16.05.2017 5 / 25



κ-framework



The need

The need of a common language

Higgs boson discovery enhanced need of common language between experiment and

theory to communicate and interpret physics results

 Higgs boson couplings play a central role

• predicted accurately

• influence its production and decay rates

↓

κ-framework has been proposed to parametrise them and probe small deviations from

the SM

The following is deeply based on CERN-PH-TH-2012-284, LHCHXSWG-2012-001
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The assumptions

• Signals observed originate from single narrow resonance with mass ∼125 GeV

• zero-width approximation: signal cross section decomposed as

(σ · BR) (i → H → f ) =
σi · Γf

ΓH
(1)

with

σi = (ggF, VBF, WH, ZH, ttH)

Γf = (ZZ , WW , γγ, ττ, bb, µµ)

ΓH total width of the Higgs boson
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The model dependency

Couplings are pseudoobservables, i.e. can not be directly measured:

“unfolding procedure” to extract information from measurable observable(s) (σ ×BR)

+
acceptance and specific experimental cuts

↓

model dependence

Various approacches:

• compare to a specific model

• model-independency, general parametrization of couplings

• use state-of-the-art predictions and insert additional terms in the Lagrangian:

change in kinematics → difficult to re-interpret results

Additional assumption:

• tensor structure of the couplings same as SM predictions: only modification of

coupling strenght
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Building the framework

SM Higgs cross section and partial decay widths dressed with scale factors

κj

→ σi and Γf scale with κ2
j when compared to SM predictions

(σ · BR) (i → H → f ) = σSM (i → H) · BRSM(H → f ) ·
κ2

i · κ
2
f

κ2
H

(2)

Corrections

• when κ 6= 1 higher-order accuracy lost

• NLO QCD corrections factorize

! κ are not the couplings in general, just at tree level
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Effective and resolved modifiers

Loop processes studied through

• effective modifiers

κg for ggF

κγ for H → γγ

• resolved modifiers

corresponding to the SM

particles
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κ-framework in the experiments



Combination: the reasons of the choice

• κ-framework in the experiments has been used from

both ATLAS and CMS to interpret results in Run 1

• combination of results useful for improvement in

precision (in average 25%-30% improvement)

• big experimental challenge connected to the problem of

unfold to different regions and phase space (see Davide

Melini’s talk)

↓

Important to know the level of precision which will be possible to achieve to know how

much deep worth going in calculations

The following is deeply based on CERN-EP-2016-100, ATLAS-HIGG-2015-07, CMS-HIG-15-002
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Performing the combination

• profile likelihood method

• simultaneous fits to the data from both experiments

• systematics correlations within each experiment and between the two experiments taken

into account

• input analyses based on event categorisation

• For each decay mode events classified in different categories based on their kinematics

and properties

• ∼ 600 exclusive categories for five production processes for five main decay channels

Parametrization to extract the modifiers from measurements:

production cross-section, partial decay widths → coupling modifiers

Changing in the couplings will results in variation of Higgs boson widthy

Giulia Gonella - kappa-framework 16.05.2017 12 / 25



Parametrization

If Higgs boson decays allowed are SM-like

κ2
H = ΓH/ΓSM

H holds

...if couplings are not as expected

variation of the Higgs boson width: new modifier is introduced κ2
H

κ2
H = Σj B

j
SMκ

2
j −→ Γ =

κ2
H · Γ

SM
H

1− BBSM

• The signal yield in a category k

nsignal (k) = L(k) ·
∑

i

∑
f

{
σi · Af ,SM

i (k) · εf
i (k)B f

}
= L(k) ·

∑
i

∑
f

µiµ
f
{
σSM

i · Af ,SM
i (k) · εf

i (k) · B f
SM

} (3)

L = integrated luminosity

Af ,SM
i (k) = detector acceptance

εf
i (k) = selection efficiency for signal category k

µiµ
f = production and decay signal strenght
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Parameters estimation

Various parametrizations used: focus on ratios of couplings modifiers

Only ratios of κ can be measured in the most generic parameterisation

• Same statistical methodology used by

single analyses

• parameters estimated through

likelihood test statistics: µ, κi , σ, BR,

ratios of the above

• likelihood fits to get parameters and

uncertainties
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Results

• σ · BR for gg → H → ZZ

parametrised as function of

κgZ = κg · κZ/κH

• measurement of VBF and ZH probe

λZg = κZ/κg

• measurements of ttH production

processes sensitive to λtg = κt/κg

• H →WW , H → ττ and H → bb

through respective ratios to H → ZZ

branching fraction probe the three

ratios λWZ = κW /κZ , λτZ = κτ/κZ

and λbZ = κ− b/κZ

• H → γγ sensitive to λγZ = κλ/κZ
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Limits of the framework



Going NLO with the κ-framework - I

• κ-framework not fully consistent

• problems rising when moving to NLO precision

Let’s consider a simplified κ-framework

The Born transition matrix element for the decay process

M0 =
e mb κffS

2sMW
ū(p)v(k) (4)

LO SM decay width rescaled by a factor κ2
ffS

To achieve more accurate theoretical prediction...
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Going NLO with the κ-framework - II

Include contributions from higher powers of α

M =M0

[
1 +

α

4π

(
δloop + δCT

)]
, (5)

δloop: contributions due to loops with internal gauge and Higgs bosons

δCT: counterterm contributions from the renormalization procedure

These are computed and the renormalization procedure is done

↓

presence of κ-dependent terms spoils the cancellation of the divergent part: M gets a

UV part

M
∣∣
UV

=
α

4π

M0

4s2M2
W

∆
(
1− κ2

ffS

)(∑
l

m2
l + 3

∑
q

m2
q

)
, (6)

which in general does not vanish for κffS 6= 1
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Further issues

Global factors can predict how many times the Higgs decay in a specific channel, but

NOT how kinematics of decay products is affected

↓

κ-framework can’t describe deviations in differential distributions

New Physics could modify differential distributions, but it wouldn’t be captured by

overall factors

• κ-framework motivated for deviations from the SM

• deviations would give directions

• no big differences found from ATLAS and CMS in Run 1

↓

Look for small deviations

New framework able to do it needed
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Experimental accuracy



The accuracy of experiments

Effective Field Theory (EFT) framework answers this need (see Raquel’s talk)

Issue in the past: limited by experiental accuracy

In EFT approach:

• higher dimensional operators ordered by
g2m2

h
Λ2

• Λ: scale of momentum cutoff of theory

• only relevant scale for Higgs production is mh

• should be well separated from accessible scale Λ

Applicability of EFT limited when scales hierarchy not guaranteed

↓

delicate balance between energy scales

In Run 1 → on-shell single Higgs production

How to estimate the physics scale possible to probe?
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Derivation

Considering couplings

 

For the SM matrix element

...for SM + BSM

Giulia Gonella - kappa-framework 16.05.2017 20 / 25



Validity in the tails of distribution

Accuracy on a rate measurement translated into reach of new physics (NP)∣∣∣∣ σ × BR

(σ × BR)SM
− 1

∣∣∣∣ =
g2m2

h

Λ2
> 10% (7)

This means

Λ <
gmh√
10%

(8)

• Λ ' 400 GeV assuming g ∼ 1

• Λ ' 280 GeV assuming new weakly interactive theory g2 ∼ 1
2

LHC Run 2: increased statistics + higher Higgs production cross section

↓

• add new distribtuions

• add off-shell processes to probe higher energy scales

Is the formula still valid if we look at the tails??

Giulia Gonella - kappa-framework 16.05.2017 21 / 25



Higgs off-shellness

When we sit on the resonance: propagator dominated by ΓH

1

(s −M2
X ) + (iΓX MX )

(9)

σon
i→X→f ∼

g2
i g2

f

ΓX
. (10)

In the off-shell region

σon
i→X→f ∼ g2

i g2
f (11)

The previous accuracy equation becomes:∣∣∣∣ σ × BR

(σ × BR)SM
− 1

∣∣∣∣ =
g2Q2

Λ2
(12)

But uncertainties changes!

• different uncertainties give same Λ testability...

Open issue How much can go higher in Q2 and still be reliable ?
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(First set of) conclusion

• κ-framework has been used for interpretation of results in Run 1

• good for identifying small deviations but need to move further for various reasons:

• shown inconsistencies when movinf to NLO

• cannot detect differential deviations

• choosing a new framework is not trivial: EFT can be a good solution

• important to take into account experimental accuracy

• accuracy related to reachable energy scales

• need to consider now the validity in the tails of distributions
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(First set of) conclusion

This starting point opened us up many questions...

Which can be a possible alternative framework ?
Which issues can be solved ?
How EFT can help and improve the prediction ?
Which tools are available with the latest implementations?
What are pseudo observables and how can them be defined for LHC?

...in the attempt of finding a flow and a possible clear picture of the future of

phenomenology and interaction between prediction and experimental results...

Stay tuned in the next talks!
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Thanks for your attention
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κ and actual couplings

The κ have often been confused with the actual couplings in the Lagrangian, which is

true at tree level, but not in a NLO formalism, indeed. As an example taking into

account the process gg → ttH(bb), at tree level one can say that the squared matrix

elements are proportional to the coupling of the interactions:

|M|2 ∝ (gtH gbH ) 2 (13)

and then, assuming the total width of the Higgs boson stays unchanged

(ΓSM
H→X = ΓH→X ), one would have: ki = gtH and kf = gbH .



Scalar fermion couplings

SF̄1F2 hf̄i fj χf̄i fj φ+ūi dj φ−d̄j ui

CL − 1
2s

mf ,i

MW
δij − i

2s
2I 3

W ,f

mf ,i

MW
δij

1√
2s

mu,i

MW
Vij − 1√

2s

md,j

MW
V †ji

CR − 1
2s

mf ,i

MW
δij

i
2s

2I 3
W ,f

mf ,i

MW
δij − 1√

2s

md,j

MW
Vij

1√
2s

mu,i

MW
V †ji

Table 1: Scalar-fermion couplings in the SM.



Combination results for couplings ratios
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