Higgs fiducial and simplified template cross sections

D. Melini^{a, b} - on behalf of the "(s)Kappa" working group

^aIFIC Valencia, ^bUniversidad de Granada

3rd HiggsTools annual meeting

Torino, 16th May 2017

One ^{framework} to rule them all, One ^{framework} to find them, One ^{framework} to bring them all and in the darkness bind them

J.R. Tolkien

Another framework to rule them all, Another framework to find them, One Ring Another framework to bring them all and in the darkness bind them One Ring

J.R. Tolkien

Introduction

Need of a general framework to present measurements on Higgs:

- Useful to theorist (comparable to theory)
- Measurements valid as long as possible (theory change)
- Separate experimental and theoretical uncertainties (theory improves)

Example

Signal strength measurement: $\mu = (\sigma \cdot \mathcal{B})^{\text{exp.}} / (\sigma \cdot \mathcal{B})^{\text{theo.}} = 1.2^{+0.9}_{-0.5}$ Problems:

- $\bullet~$ Theory changes \rightarrow value should change
- $\bullet~$ Theory improves $\rightarrow~ error$ should reduce

Solution:

- Give measurement of $(\sigma \cdot \mathcal{B})^{exp.}$
- Can compute μ with whatever modified/improved theory

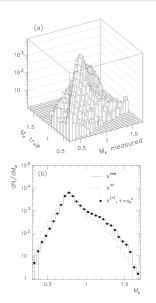
Example 2

k are not Wilson coefficients (G.Gonella's talk)

Correcting data

Correct data for detector effects to make it usable by theorists!

Unfolding procedure


From MC with full detector simulation:

- $X_{MC}^{det} = \mathcal{M} \otimes X_{MC}^{truth}$
- compute \mathcal{M}

To obtain corrected data:

- $X_{data}^{truth} = \mathcal{M}^{-1} \otimes X_{data}^{det}$
- Additional correction needed to extrapolate outside detector acceptance.
- Corrected data depends on theoretical assumptions.

The further from detector level, the bigger is the intrinsic theory input on the result.

arXiv:hep-ph/9509307

Fiducial cross sections

Measure cross sections Correct for detector effects

 \rightarrow fiducial cross sections

$$(\sigma_j)_{\mathsf{exp}}^{\mathsf{fid}} = rac{N_j^{\mathsf{events}}}{\alpha_j \epsilon_j \mathcal{L}}$$

 $\epsilon_j \quad
ightarrow \quad unfolding \ correction \quad -$

minimise theory dependence by unfolding to suitable truth level

 $\alpha_j \rightarrow$ acceptance correction \rightarrow

extrapolate to phase space outside detector acceptance

- Fiducial cross sections minimise theory dependence on the measurement.
- Exp. and theo. error factorise :

$$\frac{\Delta(\sigma_j)_{\mathsf{exp}}^{\mathsf{fid}}}{(\sigma_j)_{\mathsf{exp}}^{\mathsf{fid}}} = \frac{\Delta N_j^{\mathsf{events}}}{N_j^{\mathsf{events}}} \oplus \frac{\Delta \epsilon_j}{\epsilon_j} \oplus \frac{\Delta \alpha_j}{\alpha_j}$$

Particle level

Objects with lifetime long enough to interact with detector ($\tau > 0.3 \cdot 10^{-10}$ s). No interaction with detector is assumed.

- Theo. input in correcting data: "stable" particle interaction with detector
- Directly comparable to theoretical calculation matched to parton shower program.

Parton level

Objects which enter in fixed order calculations, usually generated from the hard process MC generators. Free of shower and hadronisation effects.

- Theo. input in correcting data: "stable" particle interaction with detector, shower&hadronisation modelling.
- Directly comparable to fixed order calculations.

Particle level minimises theory input of unfolding coefficients.

AT LAS

Define fiducial phase space the most similar possible to the one at detector level.

 \downarrow

Minimises theory input on acceptance factors

Cuts definition	ATLAS	CMS
Obj definition		
Electrons	$p_t > 7 { m GeV}, \eta < 2.47$	$p_t > 7 ext{GeV}, \eta < 2.5$
Muons	$p_t > 6 ext{GeV}, \eta < 2.7$	$p_t > 5{ m GeV}, \eta < 2.4$
Event selection		
Lep p_t cuts	$p_t > 20, 15, 10, 10 { m GeV}$	$p_t > 20, 10, 7(5), 7(5)$ GeV
	$50 { m GeV} < m(l^+, l^-) < 106 { m GeV}$	40 GeV $< m(l^+, l^-) < 120$ GeV
	$12 \text{GeV} < m(l'^-, l'^+) < 115 \text{GeV}$	$12 \text{GeV} < m(l'^-, l'^+) < 120 \text{GeV}$
Inv. masses cuts	$118 ext{GeV} < m(IIII) < 129 ext{GeV}$	$105 { m GeV} < m(IIII) < 140 { m GeV}$
	$m(l^+,l^-)>5{ m GeV}$	$m(I^+,I^-)>4{ m GeV}$
Lon constation	$\Delta R(l_i, l_j) > 0.1(0.2)$	$\Delta R(l_i, l_j) > 0.02$
Lep separation	for same(opposite) sign	for every $i \neq j$

Differences in the definition of fiducial volumes for $H \rightarrow 4I$ in ATLAS and CMS.

Same cuts are applied to detector level objects. [Phys. Lett. B738 (2014) 234-253 and CMS-PAS-HIG-14-028]

Y L
<u> </u>

Signal process	ignal process α_i (to whole phase space)	
	Higgs production modes	
ggH	0.422 ± 0.001	0.681 ± 0.002
VBF	0.476 ± 0.003	0.678 ± 0.005
WH	0.342 ± 0.002	0.672 ± 0.003
ZH	0.348 ± 0.003	0.679 ± 0.005
ttH	0.250 ± 0.003	0.685 ± 0.010
	Non-SM models	
$q\bar{q} \rightarrow H(J^{CP} = 1^{-})$	0.238 ± 0.001	0.642 ± 0.002
$q\bar{q} ightarrow H(J^{CP}=1^+)$	0.283 ± 0.001	0.651 ± 0.002
$gg ightarrow H ightarrow Z\gamma^*$	0.156 ± 0.001	0.667 ± 0.002
$gg ightarrow H ightarrow \gamma^* \gamma^*$	0.238 ± 0.001	0.671 ± 0.002

Unfolding and extrapolation correction factors, for $H \rightarrow 4I$ analysis (from CMS-PAS-HIG-14-028).

Acceptance factors depend on Higgs production modes.

Limitations of fiducial cross sections:

Extrapolation factors depend on production modes.

To combine measurements, need to extrapolate to a common fiducial phase space. Dependence of acceptance factors on production modes

Advanced event selection

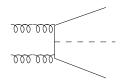
To enhance experimental sensitivity, experiments use advanced techniques (BDT, MVA, NN...), which are not easily reproducible.

- Give simplified version of advanced experimental techniques used.
- Use only cuts on kinematic variables.

Theory side

 $\sigma^{\rm fid}$ theoretical calculations need to be implemented in a MC generator. (M. Boggia talk) Most of the calculations are NLO QCD + PS .

Simplified template cross sections (STXS) framework aims to find a good balance between experimental sensitivity and theoretical independence of Higgs cross section measurements.

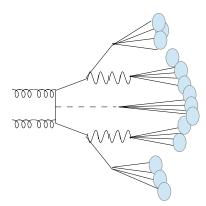

- σ -like measurements (and not μ -like)
- Combine decay channels
 - reduce stat. unc. (main unc. for most Higgs σ)
 - reduce fluctuations
 - introduce theoretical dependence
- Allow using advanced experimental techniques
 - use simplified fiducial volumes (bins)
- Distinguish different production modes

Truth level for STXS

Optimised definition of truth level for STXS:

- $\bullet~$ Particle level objects $\rightarrow~$ minimise theory dependence in unfolding
- $\bullet \ \ {\rm Higgs \ stable} \rightarrow {\rm agnostic \ to \ Higgs \ decay}$

Parton level

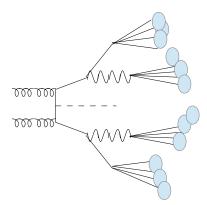


Truth level for STXS

Optimised definition of truth level for STXS:

- $\bullet~$ Particle level objects $\rightarrow~$ minimise theory dependence in unfolding
- $\bullet \ \ {\rm Higgs \ stable} \rightarrow {\rm agnostic \ to \ Higgs \ decay}$

Particle level



Truth level for STXS

Optimised definition of truth level for STXS:

- $\bullet~$ Particle level objects $\rightarrow~$ minimise theory dependence in unfolding
- $\bullet \ \ {\rm Higgs \ stable} \rightarrow {\rm agnostic \ to \ Higgs \ decay}$

STXS truth level

STXS formula

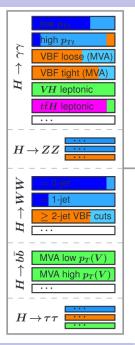
Stage 0 simplied template cross sections $\sigma_i^{\alpha_1}$:

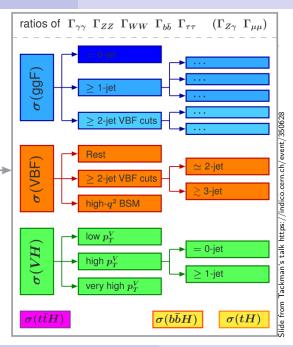
$$\sigma_{\exp}^{f} = \sum_{i,\alpha_{0}} A^{f}_{i,\alpha_{0}} \cdot \widehat{\sigma^{\alpha_{0}}}_{i} \qquad (stage \ 0)$$
$$= A_{ggH}^{f} \cdot \sigma_{ggH} + A_{VBF}^{f} \cdot \sigma_{VBF} + \dots$$

- f : final states / experimental categories
- *i*: Higgs production modes
- α_0 : bins (simplified fiducial volume indices)

At stage 0, STXSs are total production cross sections (close to signal strength fits)

$$A_{i,\alpha_0}^f$$
 computed within SM


Divide stage 0 simplified fiducial volumes in smaller ones, and so on:


$$\begin{array}{c} \downarrow \\ stage 1 \text{ and } stage 2 \text{ STXSs} \end{array}$$

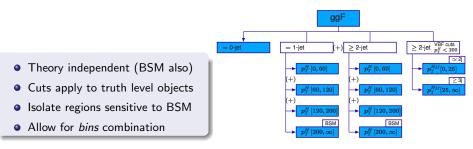
$$\sigma_{\text{exp}}^{f} = \sum_{i,\alpha_{0}\alpha_{1}} A_{i,\alpha_{0}\alpha_{1}}^{f} \cdot \sigma_{i}^{\alpha_{0}\alpha_{1}} \quad (stage 1)$$

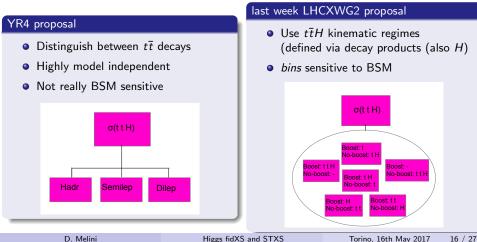
$$\sigma_{\text{exp}}^{f} = \sum_{i,\alpha_{0}\alpha_{1}\alpha_{2}} A_{i,\alpha_{0}\alpha_{1}}^{f} \cdot \sigma_{i}^{\alpha_{0}\alpha_{1}\alpha_{2}} \quad (stage 2)$$

- α_1, α_2 indices running on sub-*bins*
- Does not make sense to continue staging, because of limited statistics.

D. Melini

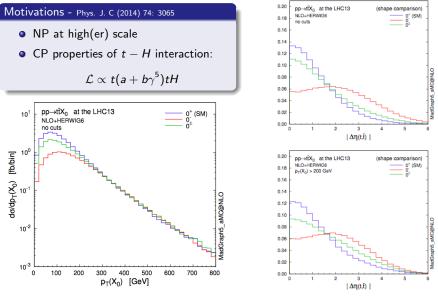
bins = simplified fiducial volumes




Figure 219: Stage 1 binning for gluon fusion production.

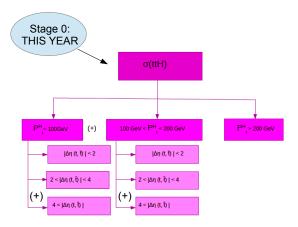
From YR4 (arXiv:1610.07922)

tTH binning: proposals



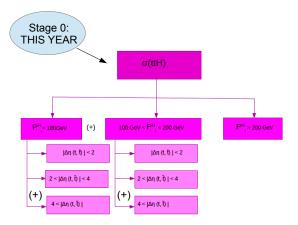
- Experiments are now starting to fill *bins* of stage 1.
- No consensuos proposal for $t\bar{t}H$ binning (still stage 0 though).
- No proposal for $b\bar{b}H$, Ht (far from being discovered) ۰

$t\bar{t}H$ binning: our proposal



D. Melini

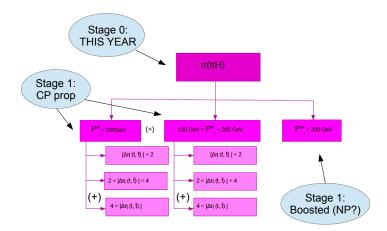
$t\overline{t}H$ binning: our proposal



Presented for the first time

	54.	12	
D.	IVIE	eiin	

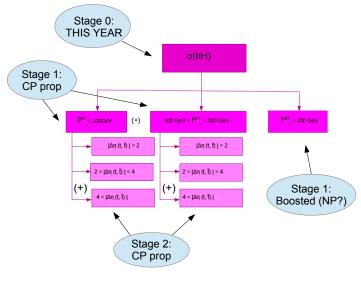
$t\overline{t}H$ binning: our proposal



Presented for the first time

	54.	12	
D.	IVIE	eiin	

$t\bar{t}H$ binning: our proposal



Presented for the first time

D.	N	lel	ini

$t\bar{t}H$ binning: our proposal

Presented for the first time

D. Melini	Higgs fidXS and STXS	Torino, 16th May 2017	18 / 27

Interplay with pseudobservables

N

See A. Ilnicka's talk on proper definition of POs. For what we are interested in here:

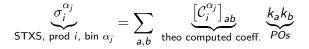
POs for STXSs

- Model indep. way to parametrize particle interactions
- $\bullet\,$ Linear in amplitude \rightarrow quadratic in cross section
- Need proxy to check expansion arounde physical poles
- $\bullet\,$ Interaction modelling enters in both production and decays \rightarrow correlations

POs available for EW production and deacy modes, not yet for all QCD modes $_{\rm Higgs \, (EW) \, production \, amplitudes}$

Amplitudes	Flavour + CP	Flavour Non Univ.	CPV
VBF neutral curr. and Zh	$\begin{bmatrix} \kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{ZZ} \end{bmatrix}$ $\epsilon_{Zu_L}, \epsilon_{Zu_R}, \epsilon_{Zd_L}, \epsilon_{Zd_R}$	$\epsilon_{Zc_L}, \epsilon_{Zc_R}$ $\epsilon_{Zs_L}, \epsilon_{Zs_R}$	$\left[\epsilon^{CP}_{ZZ}, \delta^{CP}_{Z\gamma}, \delta^{CP}_{\gamma\gamma} \right]$
VBF charged curr. and Wh	$\left[\begin{array}{c} \kappa_{WW}, \epsilon_{WW} \end{array}\right] \\ Re(\epsilon_{Wu_L}) \end{array}$	$\operatorname{Re}(\epsilon_{Wc_L})$	$ \begin{bmatrix} \epsilon_{WW}^{CP} \end{bmatrix}, \operatorname{Im}(\epsilon_{Wu_L}) \\ \operatorname{m}(\epsilon_{Wc_L}) \end{bmatrix} $

Higgs (QCD) production modes


κ_g	$\sigma(pp \to h)_{gg-{\rm fusion}} ~=~ \sigma(pp \to h)^{\rm SM}_{gg-{\rm fusion}} \kappa_g^2$		
κ_t	$\sigma(pp \rightarrow t\bar{t}h)_{\rm Yukawa} = \sigma(pp \rightarrow t\bar{t}h)_{\rm Yukawa}^{\rm SM} \kappa_t^2$		
	Higgs fidXS and STXS	Torino, 16th May 2017	19 / 27

D. Melini

PO: Branching ratios vs STXS

Writing STXSs in terms of POs (theo):

"Example" for $\left[\mathcal{C}_{i}^{lpha_{j}} ight]_{ab}$ in	VBF				arX	iv:1512.06	135	
$rac{\sigma_{ ext{VBF}}^{ ext{PO}}}{\sigma_{ ext{VBF}}^{ ext{SM}}} = \kappa^T$	$\left(\begin{array}{c} 0.32\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ \end{array}\right)$	1.06 0.	0.	3.29 0. -15.0 108 0. 0. 0.	0.	0.	$\begin{array}{c} 0. \\ -25.3 \\ -1.48 \\ 0. \\ 1.01 \\ 0. \\ 325 \end{array}$	κ

Determination of all POs / Wilson coefficients in a global fit by combining all STXSs / decay widths measurements.

Requirements

- Generators producing theoretical predictions (M. Boggia's talk)
- Need all the correlations between the measurements
- Observables coupling relations
- Impact of NP on event selections, acceptances, efficiencies
- Software performing the fit

Usually global fits performed by theorists, but not all the information is publicly available

Challenges

Observables to couplings relations

- Higgs POs and EFT have $\mathcal{O}(50)$ coefficients.
- Only $\mathcal{O}(1) \mathcal{O}(10)$ enter in observables calculations
- Need simulation to detector level to check NP effect on data correction

 $n^p \cdot X$ GB , with *n* variations, *p* parameters, X is MC output weight

 10^6 events events in .LHE file $\rightarrow X \approx 500$ MB

- n = 4 variations for each coefficient
- p = 5 coefficients in observable calculation
- $\approx 500~\text{GB}$, for each independent observable

The Worldwide LHC computing grid (WLCG) handles $\approx 2\cdot 10^8~\text{GB}$ disk storage

Reduce MC size

- Morphing techniques reduce n^{p} : $\mathcal{R}(\vec{k}_{new}) = \sum_{i=1}^{n} w\left(\vec{k}_{new}, \vec{k}_{i}\right) \cdot \mathcal{R}(\vec{k}_{i})$
- Detector simulation smearing .lhe output (no need for full det sim)

Fit framework

- Global fit is usually a likelihood (\mathcal{L}) minimisation
- Lots of observables, correlations and multiple parameters to fit
- \mathcal{L} difficult to compute
- Usually multivariate Gaussian model

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma(x-\mu)\right) \qquad \text{ with } \Sigma_{ij} = \sigma_{i}\sigma_{j}\rho_{ij}$$

Complicated \mathcal{L} could need seconds to be computed. Minimisation require multiple calls (exponential with dimension of parameters) Multidimensional minimisation often has empty bins

Profiling

Extract one fitted value at a time, by profiling on others Repeat procedure for each value

Strategies to catalogise Higgs measurements has been presented. Several aspects have been taken into account:

- Data unfolding
- Truth levels and fiducial phase spaces
- STXSs binning (*ttH* in particular)
- STXSs connection with POs
- Global fits challenges

Efforts started toward a global fit for Higgs physics. Most of the ongoing work require a theoretical-experimental collaboration.

Strategies to catalogise Higgs measurements has been presented. Several aspects have been taken into account:

- Data unfolding
- Truth levels and fiducial phase spaces
- STXSs binning (*ttH* in particular)
- STXSs connection with POs
- Global fits challenges

Efforts started toward a global fit for Higgs physics. Most of the ongoing work require a theoretical-experimental collaboration.

Thanks for your attention!

Back-up

POs and BRs

РО	Physical PO	Relation to the eff. coupl.
$\kappa_f, \ \delta_f^{\mathrm{CP}}$	$\Gamma(h\to f\bar{f})$	$=\ \Gamma(h\to f\bar{f})^{\rm (SM)}[(\kappa_f)^2+(\delta_f^{\rm CP})^2]$
$\kappa_{\gamma\gamma}, \delta^{ m CP}_{\gamma\gamma}$	$\Gamma(h o \gamma \gamma)$	$= \ \Gamma(h \to \gamma \gamma)^{\rm (SM)} [(\kappa_{\gamma \gamma})^2 + (\delta^{\rm CP}_{\gamma \gamma})^2]$
$\kappa_{Z\gamma}, \delta^{ m CP}_{Z\gamma}$	$\Gamma(h \rightarrow Z \gamma)$	$= \ \Gamma(h \to Z \gamma)^{\rm (SM)} [(\kappa_{Z \gamma})^2 + (\delta^{\rm CP}_{Z \gamma})^2]$
κ_{ZZ}	$\Gamma(h o Z_L Z_L)$	$=$ (0.209 MeV) $\times \kappa_{ZZ} ^2$
ϵ_{ZZ}	$\Gamma(h o Z_T Z_T)$	$=~(1.9\times 10^{-2}~{\rm MeV})\times \epsilon_{ZZ} ^2$
$\epsilon_{ZZ}^{ m CP}$	$\Gamma^{\rm CPV}(h \to Z_T Z_T)$	$= (8.0 imes 10^{-3} \text{ MeV}) imes \epsilon_{ZZ}^{CP} ^2$
ϵ_{Zf}	$\Gamma(h \to Z f \bar{f})$	$= \ (3.7 \times 10^{-2} \ {\rm MeV}) \times N_c^f \ \epsilon_{Zf} ^2$
κ_{WW}	$\Gamma(h \to W_L W_L)$	$=$ (0.84 MeV) \times $ \kappa_{WW} ^2$
ϵ_{WW}	$\Gamma(h \to W_T W_T)$	$= (0.16 \text{ MeV}) \times \epsilon_{WW} ^2$
$\epsilon^{ ext{CP}}_{WW}$	$\Gamma^{\text{CPV}}(h \to W_T W_T)$	$=$ $(6.8 imes 10^{-2} \text{ MeV}) imes \epsilon^{ ext{CP}}_{WW} ^2$
ϵ_{Wf}	$\Gamma(h \to W f \bar{f}')$	$= (0.14 \text{ MeV}) \times N_c^f \epsilon_{Wf} ^2$

Efficiencies and accpetance factors could depend on the underlying event. Need to check that this is minimised \rightarrow generate NP MC samples to detector level

Time to generate an event at detector level (tipically needed $10^8 - 10^9$ events)

- Experiments fast simulations: $\approx 100 \text{ s/evt}$
- Delphes: $\approx 1 \text{ s/evt}$
- $\bullet~$ Smearing .lhe file: $\approx 10^{-3}~s/evt$