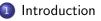
TauSpinner Developments in Production of τ lepton pairs with high P_T jets at the LHC: the spin2 case

Marzieh Bahmani

with J. Kalinowski, W. Kotlarski, E. Richter-Was and Z. Was

IFJ-PAN Krakow



16 May 2017

Marzieh Bahmani with J. Kalinowski, W. Ko TauSpinner Developments in Production of

16 May 2017 1 / 23

Outline

TauSpinner

- 3 TauSpinner development
 - Matrix Element implementation $(2\rightarrow 4)$ processes for Non-SM
 - Test of re-weighting
 - Technical issues

Introduction

• HBSM H+ to $\tau\nu$: Search for charged Higgs bosons in the τ +jets and τ +lepton final states from pp collision data recorded at $\sqrt{(s)} =$ 13 TeV with the ATLAS experiment

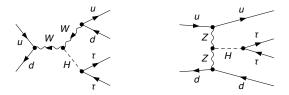
• TauSpinner Developments in Production of τ lepton pairs with high P_T jets at the LHC: the spin2 case

Introduction

- Explore final states with au lepton
- $\bullet\,$ High mass of $\tau \to {\rm provide}$ a sensitive window to physics beyond SM
- au lepton signature can provide a powerful tool in many areas o
 - 1- Studies of hard process characteristics
 - 2- Measurements of properties of Higgs boson
 - 3- In a search for new physics.
- TauSpinner algorithm provides a powerful tool for investigation of characteristics of final states with τ lepton

TauSpinner

• TauSpinner is a tool that allows to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events.


- The only information used is the kinematics of final state, therefore it can be used both for Data and MC simulations
- TauSpinner calculate weight from input, Weights are ratios of matrix elements calculated for New and OLd assumptions.

TauSpinner Program

- TauSpinner Program is commonly used by the LHC experiments :
 - TauSpinner $(2 \rightarrow 2)$ processes

• TauSpinner (2 \rightarrow 4) processes - NEW !

Figure: Depending on the initial state , tree level matrix elements are of the order of $\alpha_s \alpha_{EW}$ or α_{EW}^2 , sometimes involving triple WWZ coupling.

New development: Non-SM implementation

- I will discuss general implementation of Beyond SM processes, I am using a single example here.
- The algorithm is supposed to work for any modification of SM predictions (for production of 2 τ s and 2 jets)
- After I described how this model used for spin amplitudes calculation.
- Test of re-weighting

Case of Spin2

- The coupling of a massive spin 2 field to SM gauge bosons was already intensively studied in the literature in the context of an LHC phenomenology.
- A work dedicated to study of a Drell-Yan-like production of τ 's through a hypothetical spin 2 mediator X (2013). Building on this previous work, we extend it by studying the $X \to \tau^+ \tau^-$ production and decay in the VBF topology.
- We don not comment on the origin of X state, (not claim it is connected to gravity) so we do not couple it to the entire energy-momentum tensor of the SM , not to ghosts, gauge fixing term, trace of X or Higgs boson kinetic term.

Marzieh Bahmani with J. Kalinowski, W. Ko TauSpinner Developments in Production of

$$\mathcal{L} \ni \frac{1}{F} X_{\mu\nu} \left(g_{XBB} \ B^{\mu\rho} B_{\rho}^{\ \nu} + g_{XWW} W_{i}^{\mu\rho} W_{\rho}^{\ \nu} + g_{Xgg} G^{\mu\rho} G_{\rho}^{\ \nu} \right).$$
(1)

- In this work we focus on the coupling of X to EW gauge bosons and coupling to gluons would be studied better in Drell-Yan-Like configuration.
- This extension of the SM by a spin 2 field, including its coupling to quarks and tau leptons, is encoded into FeynRules model(FeynRules 2.0 A complete toolbox for tree-level phenomenology, 1310.1921)
- The FeynRules model file, together with its UFO output(1108.2040)
- The UFO model is used to generate squared matrix elements using MadGraph5 the spin 2 has the support of the HELAS library

Implementation of new ME needs following steps:

- Generate spin2 process by Madgraph
- (a) import model spin2_w_CKM_UFO
- (b) by default, "multiparticles" containers include all massless partons
 p = g u c d s u c d s a
 j = g u c d s u c d s a
- (c) generate spin 2 matrix elements generate p p > j j x QED<=99 QCD<=99 NPgg<=99 NPqq<=99 NPVV<=99, x > ta+ ta-
- (d) write the output to disk in MadGraph's standalone mode using output standalone "directory name" command

E Sac

イロト イポト イヨト イヨト

- The generated codes for the individual sub-processes are grouped in to subroutines, the proper changed applied:
- (a) Depending on the flavor of initial state partons named properly SUBROUTINE DCX_S2(P,I3,I4,H1,H2,ANS)
- (b) Parameter H1 and H2 introduced as helicities of τ s
- (c) The subroutines and internal functions generated by MadGraph have the same names for all sub-processes SMATRIX(P,ANS) \rightarrow be unique for each sub-process. $u\bar{d} \rightarrow c\bar{d}x, x \rightarrow \tau^+\tau^-$ name is changed to UDX_CDX_S2(P,H1,H2,ANS)

- Apply the combinatorial and CP symmetries that allow us to reduce the number of parton subprocesses
- (a) Check if Matrix Element can be set to zero
- (b) Charge conservation imposes that for processes
- (c) all necessary transformations (flipping the position of partons or invoking the CP transformation)

Test of matrix elements using fixed kinematical configuration

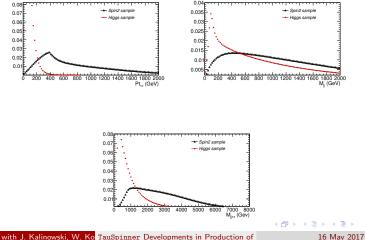
For a point in phase space

P[0,i]=	500.0000000000	0.000000000	0.000000000	500.0000000000
P[1,i]=	500.000000000	0.0000000000	0.000000000	-500.0000000000
P[2,i]=	88.5500900000	-22.1003800000	40.0797900000	-75.8043700000
P[3,i]=	328.3248000000	-103.8482000000	-301.9295000000	76.4938500000
P[4,i]=	152.3663000000	-105.8795000000	-97.7082700000	49.5476900000
P[5,i]=	430.7588000000	231.8280000000	359.5580000000	-50.2371700000

```
-4 -4 -4 CP used= 1 ## VALUE: 5.4498795386e-11
                                                              Spin contr.: (+-)= 2.722e-11 (-+)= 2.728e-11 (--)= 2.001e-15 (++)= 2.000e-15
                                                                                              (-+)= 1.363e-12
                                                                                                                                 (++) = 1.540e - 17
        -3 -4 -3 CP used= 1 ## VALUE: 2.4550857518e-12
                                                              Spin contr.: (+-)= 1.092e-12
                                                                                                               (--) = 1.970e-17
ID-s= -4 -3 -4 -1 CP used= 1 ## VALUE: 1.7504240128e-14
                                                           ##
                                                              Spin contr.: (+-)= 2.714e-15
                                                                                              (-+) = 1.431e - 14
                                                                                                                (--) = 2.441e-16
                                                                                                                                 (++) = 2.398e - 16
ID-s= -4 -3 -3 -4 CP used= 1 ## VALUE: 5.2604665756e-11
                                                           ##
                                                              Spin contr.: (+-)= 2.627e-11
                                                                                              (-+) = 2.633e - 11
                                                                                                                (--) = 1.994e - 15
                                                                                                                                 (++) = 1.992e - 15
                                                                                              (-+)= 3.421e-16
ID-s= -4 -3 -3 -2 CP used= 1 ## VALUE: 3.5660092224e-16
                                                              Spin contr.: (+-) = 9.101e-18
                                                                                                                (--) = 2.661e-18
                                                                                                                                 (++) = 2.706e - 18
ID-s= -4 -3 -2 -3 CP used= 1 ## VALUE: 1.8277516190e-14
                                                           ##
                                                              Spin contr.: (+-) = 1.373e-15
                                                                                              (-+)= 1.690e-14
                                                                                                                      1.949e-18
                                                                                                                                 (++) = 1.633e-18
        -3 -2 -1 CP used= 1 ## VALUE:
                                                              Spin contr.: (+-) = 1.496e-16
                                                                                              (-+) = 7.878e - 16
                                                                                                                                 (++) = 1.397e - 17
TD-s= -4
                                                                                                                      1.421e-17
ID-s= -4 -3 -1 -4 CP used= 1 ## VALUE: 1.0030302326e-15
                                                              Spin contr.: (+-) = 1.297e-16
                                                                                              (-+)= 8.731e-16 (--)= 9.599e-20 (++)= 9.985e-20
                                                                                              (-+) = 1.809e - 17
                                                                                                               (--) = 2.068e - 19
                                                                                                                                 (++) = 2.100e - 19
ID-s= -4 -3 -1 -2 CP used= 1 ## VALUE: 1.8892558599e-17
                                                           ##
                                                              Spin contr.: (+-)= 3.852e-19
ID-s= -4 -2 -4 -2 CP used= 1 ## VALUE: 4.2991410664e-12
                                                           ##
                                                              Spin contr.: (+-) = 2.149e-12
                                                                                              (-+) = 2.149e - 12
                                                                                                               (--) = 4.370e - 16
                                                                                                                                 (++) = 4.370e - 16
     -4 -2 -2 -4 CP used= 1 ## VALUE:
                                       5.0256296146e-11
                                                           ##
                                                              Spin contr.: (+-)= 2.509e-11
                                                                                              (-+) = 2.516e - 11
                                                                                                                (--) = 1.937e-15 (++) = 1.936e-15
ID-s= -4 -1 -4 -3 CP used= 1 ## VALUE: 2.0822426627e-14
                                                              Spin contr.: (+-) = 1.833e-15
                                                                                              (-+)= 1.899e-14
                                                                                                               (--) = 1.933e-19
                                                                                                                                (++) = 9.984e-20
ID-s= -4 -1 -4 -1 CP used= 1 ## VALUE:
                                       4 3555086047e-12
                                                              Spin contr.: (+-)= 2.158e-12
                                                                                              (-+) = 2.196e - 12
                                                                                                                (--) = 5.405e-16
                                                                                                                                 (++) = 5.366e - 16
TD-s= -4 -1 -3 -4 CP used= 1 ## VALUE: 7.2679264348e-16
                                                           ## Spin contr.: (+-)= 3.219e-16 (-+)= 4.037e-16 (--)= 5.923e-19 (++)= 5.705e-19
```

• The agreement of at least 6 significant digit has been confirmed.

(日) (同) (三) (三)

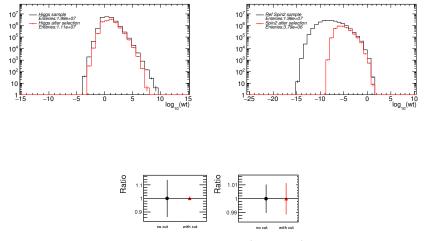

Test of re-weighting

- Samples for Spin2 and Higgs particle by Madgraph were generated (19 M).
- The parameters in TauSpinner initialized in consistent with generated sample.
- The spin weight ratio calculated by TauSpinner by getWtNonSM method
- Re-weighting applied on kinematical distribution

Test of re-weighting

Kinematical distributions which have significant difference for Higgs and Spin2 sample

Figure: The selections : $m_{ii\tau\tau}$ < 1500 GeV , m_{ii} < 800 GeV and $P_T^{\tau\tau}$ < 600 GeV



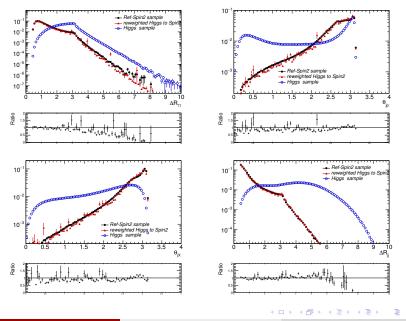
3

15 / 23

Marzieh Bahmani with J. Kalinowski, W. Ko TauSpinner Developments in Production of

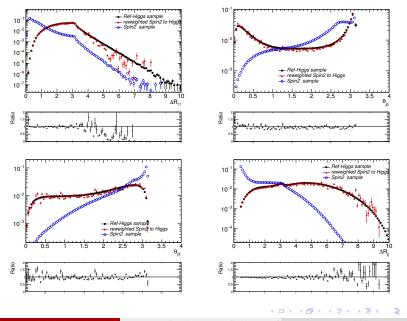
Weight distribution \rightarrow painful tails \rightarrow method limitation

Figure: The ratio cross section for Higgs re-weighted to Spin2 and Spin2 samples in the left, and for Spin2 re-weighted to Higgs and Higgs samples in the right (different scale)


16 May 2017 16 / 23

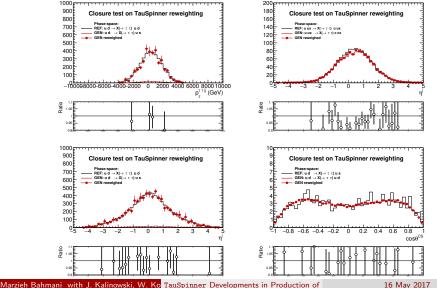
Kinematical distribution

- ΔR_{jj} : Opening angle between jets.
- $\Delta R_{\tau\tau}$: Opening angle between τ s.

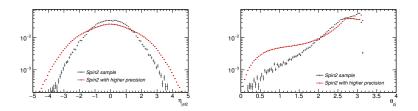

$$\Delta R_{ au au} = \sqrt{(\eta_{ au^+} - \eta_{ au^-})^2 + (\phi_{ au^+} - \phi_{ au^-})^2}$$

- θ_{jp}: Angle between incoming parton and outgoing parton in the rest frame of jets.
- θ_{jX}: Angle between resonance and outgoing parton in the rest frame of jets.

Marzieh Bahmani with J. Kalinowski, W. Ko TauSpinner Developments in Production of



Marzieh Bahmani with J. Kalinowski, W. Ko TauSpinner Developments in Production of


Clouser test on TauSpinner reweighting

017 20 / 23

Technical issues

In the case of Spin2 sample we encounter a problem related to accuracy of sample, the samples were produced by Madgraph5 based on MadEvent

Technical issues

- The event density of re-weighted sample may differ from the target by unacceptable large factor resulting few events with massively large weight than others
- This is the consequence of very narrow width of Higgs or X resonances.
- The physics of X would populate sizably much larger phase space than Higgs production, so the re-weighting algorithm need to be restricted to some regions of phase space than production of higgs.

Summary

- Implementation of Spin2 model and check the accuracy of ME calculation
- \bullet Creating a user provided matrix elements for production of τ lepton with 2 jets
- This is available in tauolapp.web.cern.ch/tauolapp/resources/TAUOLA.development.version/
- We have provided numerical test of the algorithm
- Material for publication is nearly ready, the tests are confirmed, except may be an overall normalization factor.