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Introduction

The φ∗ project: Higgs+jet production.

Two-loop: 1⁄2 a page in the main text, 20 pages of appendix.

Appendix A: Two-loop Feynman integrals

A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals
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A1: Extracting the numerator

Three processes contribute

gg → gH qq̄ → gH qg → qH

The gluon channel contains 286 Feynman diagrams,
the quark channels each contain 61.

In the following we will mostly discuss gg → gH.
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A1: Extracting the numerator

The Feynman diagrams may be generated with FeynArts.
Four of the 286 diagrams contributing to gg → gH

gluon propagator: 1 term
quark propagator: 2 terms

ggg vertex: 6 terms
gggg vertex: 6 terms
qq̄g vertex: 1 term
qq̄H vertex: 1 term

tr
(
γµ1γµ2 · · · γµn

)
= (n− 1)!! terms

In total: approx. 100 000 terms.
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A3: Integrand reduction

M =
∑

i∈diagrams

∫ ∏L
l ddkl

(iπd/2)L
Ni({k})∏
j∈iDj({k})

D1 = (k1)2 , D2 = (k1 + p1)2 , D3 = (k2 + p1)2 −m2 , . . .

Integrand reduction is cancellations between numerator and denominator.

Example:

C
k · p

(k2) ((k − p)2 −m2)
=
C

2

(
p2 −m2

(k2) ((k − p)2 −m2)
− 1

k2
+

1

(k − p)2 −m2

)
Doing this systematically (perhaps using algebraic geometry) gives

M =
∑

i∈topologies

∫ ∏L
l ddkl

(iπd/2)L
∆i({k})∏
j∈iDj({k})

∆i is the irreducible numerator. Has in general 50-100 terms.

More reduction is desired...
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A4: Integration-By-Parts identities

Integral-level identities

∫
∇ · fdV =

∮
f · dA⇒∫

ddk

iπd/2
∂

∂kµ
vµI(k) = 0

k is a loop-momentum, v is some momentum,
I(k) some Feynman integrand.

Different choices of vµ, k, F (k) imples a lot of identities.
Reduction to a minimal set called “master integrals”.

Mass-less 2→ 2 at one-loop has 3 master integrals:
two ’bubbles’ and a ’box’.

4-scale two-loop systems have ≈ 100
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A4: Integration-By-Parts identities
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A5: The differential equation method

With a minimal set of Feynman integrals,
we can not postpone solving them.

Feynman parameters etc. are not feasable.

Use diferential equations:

∂

∂s
Ii =

∑
j

AijIj

Coupled linear first-order differential equations.

dI = ε(dÃ)I , Ãij =
∑
l

cijl log(fl(s))

Canonical form
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A5: The differential equation method

dI = ε(dÃ)I , Ãij =
∑
l

cijl log(fl(s))

Expanding in ε = (4− d)/2 as

Ii =
∞∑
k=0

I
(k)
i εk

gives

∂I
(k)
i (s)

∂s
=
∑
j

∂Ãij
∂s

I
(k−1)
i (s)

Ãij = log(s)− log(s− t)⇒

I
(k)
i =

∫
ds

(
1

s
− 1

s− t

)
I
(k−1)
j + · · ·

G(a1, . . . , an;x) ≡
∫ x

0

dz

z − a1
G(a2, . . . , an; z)
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∑
l

cijl log(fl(s))

Expanding in ε = (4− d)/2 as

Ii =

∞∑
k=0

I
(k)
i εk

gives

∂I
(k)
i (s)

∂s
=
∑
j

∂Ãij
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A6: Generalized Polylogarithms

The generalized polylogarithm (GPL)

G(a1, . . . , an;x) ≡
∫ x

0

dy

y − a1
G(a2, . . . , an; y)

G(;x) ≡ 1 , G(01, . . . , 0n;x) ≡ logn(x)

n!

The rescaling identity:

G(a1, . . . , an;x) = G(za1, . . . , zan; zx) if z 6= 0, an 6= 0

The shuffle product:

G(ā;x)G(b̄;x) =
∑
i

G(c̄i;x) ci ∈ āXb̄

G(a1, a2;x)G(b;x) = G(a1, a2, b;x) +G(a1, b, a2;x) +G(b, a1, a2;x)

G(0̄m1−1, a1, . . . , 0̄mn−1, an;x) = (−1)nLim1,...,mn

(
x
a1
, a1a2 , . . . ,

an−1

an

)
Lim1,...,mn

(
x1, . . . , xn

)
=

∑
i1>···>in>0

xi11
im1
1

· · · x
in
n

imn
n
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A7: Symbols

There are many relations between (generalized) polylogarithms.

The ’Symbol’ is a quantity that captures the algebraic parts of such
relations, but ignores the analytic parts (no branch-cuts, no iπ).

S
(
G(a1, . . . , an; a0)

)
=

n−1∑
i=1

(
S
(
G(a1, . . . , âi, . . . , an; a0)

)
⊗ (ai − ai−1)

− S
(
G(a1, . . . , âi, . . . , an; a0)

)
⊗ (ai − ai+1)

)

Li2
(
1
x

)
= −Li2(x)− 1

2
log(−x)2 − π2

6

S
(
Li2
(
1
x

))
=
(
(1− x)⊗ x

)
−
(
x⊗ x

)
S
(
Li2(x)

)
= −

(
(1− x)⊗ x

)
S
(

log(−x)2
)

= 2
(
x⊗ x

)
S
(
π2/6

)
= 0
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A7: Symbols

The DGR (Duhr, Gangl, Rhodes) algorithm:

1) Find the symbol of your expression
2) Find a basis of function w. matching symbol
3) Invert the system
4) Find terms not captured by symbol.

The symbol can be derived directly from the canonical diff.eq:

df (n) = c(d log(y))f (n−1) ⇔ S(f (n)) = cS(f (n−1))⊗ y

A basis can usually be found in terms of log, Lin, and Li2,2.

Finding arguments and inversion is where most computer time is spent.

A more sophisticated version of the symbol denoted the ’co-product’
can help fix many of the remaining terms.
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Interlude: Implementations of GPLs and symbols

Numeric: GiNaC package by VW, gtolrules by FTW
Analytic: HyperInt by Panzer, HarmonicSums by Ablinger
Symbols: Unpublished package by Duhr (and many others)
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A8: Elliptic Integrals

All Feynman Integrals (FIs)

FIs expressable as integrals over elliptic integrals

FIs expessable on dlog/canonical form

FIs expressable as GPLs

FIs expressable asclassical polylogs
FIs expressable as

logarithms

H. Frellesvig Two-loop May 16, 2017 14 / 16



A8: Elliptic Integrals

A cannonical form is not always possible

The “massive sunrise” requires elliptic integrals

K(k) ≡
∫ 1

0

dx√
(1− x2)(1− k2x2)

E(k) ≡
∫ 1

0

√
1− k2x2
1− x2

dx

Complete elliptic integrals of first and second kind
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Summary

Appendix A: Two-loop Feynman integrals

A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals

Not discussed: Renormalization, IR-subtractions, phase space integrals,
unitarity cuts, Gröbner bases, local integrands, co-products,
elliptic polylogarithms, modular forms, homology theory,
N = 4 theory, dual conformal invariace, twistor theory.

Thank you for listening.
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