Two-loop Feynman calculations

Hjalte Frellesvig

NCSR Demokritos - Athens, Greece

May 16, 2017

The ϕ^{*} project: Higgs+jet production.

Two-loop: $1 / 2$ a page in the main text, 20 pages of appendix.

The ϕ^{*} project: Higgs+jet production.

Two-loop: $1 / 2$ a page in the main text, 20 pages of appendix.
Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals
higgstools

A1: Extracting the numerator

Three processes contribute

The gluon channel contains 286 Feynman diagrams, the quark channels each contain 61.
In the following we will mostly discuss $g g \rightarrow g H$.

A1: Extracting the numerator

The Feynman diagrams may be generated with FeynArts. Four of the 286 diagrams contributing to $g g \rightarrow g H$

gluon propagator: 1 term
quark propagator: 2 terms
ggg vertex: 6 terms
gggg vertex: 6 terms
$q \bar{q} g$ vertex: 1 term
$q \bar{q} H$ vertex: 1 term

$$
\operatorname{tr}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \cdots \gamma^{\mu_{n}}\right)=(n-1)!!\text { terms }
$$

higgstools

A1: Extracting the numerator

The Feynman diagrams may be generated with FeynArts. Four of the 286 diagrams contributing to $g g \rightarrow g H$

gluon propagator: 1 term
quark propagator: 2 terms
ggg vertex: 6 terms
gggg vertex: 6 terms
$q \bar{q} g$ vertex: 1 term
$q \bar{q} H$ vertex: 1 term

$$
\operatorname{tr}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \cdots \gamma^{\mu_{n}}\right)=(n-1)!!\text { terms }
$$

In total: approx. 100000 terms.

A3: Integrand reduction

$$
\begin{gathered}
M=\sum_{i \in \text { diagrams }} \int \frac{\prod_{l}^{L} \mathrm{~d}^{d} k_{l}}{\left(i \pi^{d / 2}\right)^{L}} \frac{N_{i}(\{k\})}{\prod_{j \in i} D_{j}(\{k\})} \\
D_{1}=\left(k_{1}\right)^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{2}+p_{1}\right)^{2}-m^{2}, \ldots
\end{gathered}
$$

Integrand reduction is cancellations between numerator and denominator.

A3: Integrand reduction

$$
\begin{gathered}
M=\sum_{i \in \text { diagrams }} \int \frac{\prod_{l}^{L} \mathrm{~d}^{d} k_{l}}{\left(i \pi^{d / 2}\right)^{L}} \frac{N_{i}(\{k\})}{\prod_{j \in i} D_{j}(\{k\})} \\
D_{1}=\left(k_{1}\right)^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{2}+p_{1}\right)^{2}-m^{2}, \ldots
\end{gathered}
$$

Integrand reduction is cancellations between numerator and denominator.
Example:

$$
C \frac{k \cdot p}{\left(k^{2}\right)\left((k-p)^{2}-m^{2}\right)}=\frac{C}{2}\left(\frac{p^{2}-m^{2}}{\left(k^{2}\right)\left((k-p)^{2}-m^{2}\right)}-\frac{1}{k^{2}}+\frac{1}{(k-p)^{2}-m^{2}}\right)
$$

A3: Integrand reduction

$$
\begin{gathered}
M=\sum_{i \in \text { diagrams }} \int \frac{\prod_{l}^{L} \mathrm{~d}^{d} k_{l}}{\left(i \pi^{d / 2}\right)^{L}} \frac{N_{i}(\{k\})}{\prod_{j \in i} D_{j}(\{k\})} \\
D_{1}=\left(k_{1}\right)^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{2}+p_{1}\right)^{2}-m^{2}, \ldots
\end{gathered}
$$

Integrand reduction is cancellations between numerator and denominator.

> Example:
> $C \frac{k \cdot p}{\left(k^{2}\right)\left((k-p)^{2}-m^{2}\right)}=\frac{C}{2}\left(\frac{p^{2}-m^{2}}{\left(k^{2}\right)\left((k-p)^{2}-m^{2}\right)}-\frac{1}{k^{2}}+\frac{1}{(k-p)^{2}-m^{2}}\right)$

Doing this systematically (perhaps using algebraic geometry) gives

$$
M=\sum_{i \in \text { topologies }} \int \frac{\prod_{l}^{L} \mathrm{~d}^{d} k_{l}}{\left(i \pi^{d / 2}\right)^{L}} \frac{\Delta_{i}(\{k\})}{\prod_{j \in i} D_{j}(\{k\})}
$$

Δ_{i} is the irreducible numerator. Has in general $50-100$ terms.

A3: Integrand reduction

$$
\begin{gathered}
M=\sum_{i \in \text { diagrams }} \int \frac{\prod_{l}^{L} \mathrm{~d}^{d} k_{l}}{\left(i \pi^{d / 2}\right)^{L}} \frac{N_{i}(\{k\})}{\prod_{j \in i} D_{j}(\{k\})} \\
D_{1}=\left(k_{1}\right)^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{2}+p_{1}\right)^{2}-m^{2}, \ldots
\end{gathered}
$$

Integrand reduction is cancellations between numerator and denominator.

> Example:
> $C \frac{k \cdot p}{\left(k^{2}\right)\left((k-p)^{2}-m^{2}\right)}=\frac{C}{2}\left(\frac{p^{2}-m^{2}}{\left(k^{2}\right)\left((k-p)^{2}-m^{2}\right)}-\frac{1}{k^{2}}+\frac{1}{(k-p)^{2}-m^{2}}\right)$

Doing this systematically (perhaps using algebraic geometry) gives

$$
M=\sum_{i \in \text { topologies }} \int \frac{\prod_{l}^{L} \mathrm{~d}^{d} k_{l}}{\left(i \pi^{d / 2}\right)^{L}} \frac{\Delta_{i}(\{k\})}{\prod_{j \in i} D_{j}(\{k\})}
$$

Δ_{i} is the irreducible numerator. Has in general 50-100 terms.
More reduction is desired...

A4: Integration-By-Parts identities

Integral-level identities

A4: Integration-By-Parts identities

Integral-level identities

$$
\begin{aligned}
& \int \nabla \cdot \mathbf{f} \mathrm{d} V=\oint \mathbf{f} \cdot \mathrm{d} \mathbf{A} \Rightarrow \\
& \int \frac{\mathrm{~d}^{d} k}{i \pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} v^{\mu} I(k)=0
\end{aligned}
$$

k is a loop-momentum, v is some momentum, $I(k)$ some Feynman integrand.

A4: Integration-By-Parts identities

Integral-level identities

$$
\begin{aligned}
& \int \nabla \cdot \mathbf{f} \mathrm{d} V=\oint \mathbf{f} \cdot \mathrm{d} \mathbf{A} \Rightarrow \\
& \int \frac{\mathrm{~d}^{d} k}{i \pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} v^{\mu} I(k)=0
\end{aligned}
$$

k is a loop-momentum, v is some momentum, $I(k)$ some Feynman integrand.

Different choices of $v^{\mu}, k, F(k)$ imples a lot of identities. Reduction to a minimal set called "master integrals".

Mass-less $2 \rightarrow 2$ at one-loop has 3 master integrals: two 'bubbles' and a 'box'.

4 -scale two-loop systems have ≈ 100

A4：Integration－By－Parts identities

$$
\begin{aligned}
& \text { 山过过过过过过过 }
\end{aligned}
$$

$$
\begin{aligned}
& \triangle \triangle \triangle \mathrm{A} \bar{I}_{0} \square_{0} \square \square \square
\end{aligned}
$$

A5: The differential equation method

With a minimal set of Feynman integrals, we can not postpone solving them.

Feynman parameters etc. are not feasable.

A5: The differential equation method

With a minimal set of Feynman integrals, we can not postpone solving them.

Feynman parameters etc. are not feasable.
Use diferential equations:

$$
\frac{\partial}{\partial s} I_{i}=\sum_{j} A_{i j} I_{j}
$$

Coupled linear first-order differential equations.

A5: The differential equation method

With a minimal set of Feynman integrals, we can not postpone solving them.

Feynman parameters etc. are not feasable.
Use diferential equations:

$$
\frac{\partial}{\partial s} I_{i}=\sum_{j} A_{i j} I_{j}
$$

Coupled linear first-order differential equations.

$$
\mathrm{d} \mathbf{I}=\epsilon(\mathrm{d} \tilde{A}) \mathbf{I}, \quad \tilde{A}_{i j}=\sum_{l} c_{i j l} \log \left(f_{l}(s)\right)
$$

Canonical form

A5: The differential equation method

$$
\mathrm{d} \mathbf{I}=\epsilon(\mathrm{d} \tilde{A}) \mathbf{I}, \quad \tilde{A}_{i j}=\sum_{l} c_{i j l} \log \left(f_{l}(s)\right)
$$

A5: The differential equation method

$$
\mathrm{d} \mathbf{I}=\epsilon(\mathrm{d} \tilde{A}) \mathbf{I}, \quad \tilde{A}_{i j}=\sum_{l} c_{i j l} \log \left(f_{l}(s)\right)
$$

Expanding in $\epsilon=(4-d) / 2$ as

$$
\begin{aligned}
I_{i}= & \sum_{k=0}^{\infty} I_{i}^{(k)} \epsilon^{k} \\
& \text { gives } \\
\frac{\partial I_{i}^{(k)}(s)}{\partial s}= & \sum_{j} \frac{\partial \tilde{A}_{i j}}{\partial s} I_{i}^{(k-1)}(s)
\end{aligned}
$$

A5: The differential equation method

$$
\mathrm{d} \mathbf{I}=\epsilon(\mathrm{d} \tilde{A}) \mathbf{I}, \quad \tilde{A}_{i j}=\sum_{l} c_{i j l} \log \left(f_{l}(s)\right)
$$

Expanding in $\epsilon=(4-d) / 2$ as

$$
\begin{gathered}
I_{i}=\sum_{k=0}^{\infty} I_{i}^{(k)} \epsilon^{k} \\
\text { gives } \\
\frac{\partial I_{i}^{(k)}(s)}{\partial s}=\sum_{j} \frac{\partial \tilde{A}_{i j}}{\partial s} I_{i}^{(k-1)}(s) \\
\tilde{A}_{i j}=\log (s)-\log (s-t) \Rightarrow \\
I_{i}^{(k)}=\int \mathrm{d} s\left(\frac{1}{s}-\frac{1}{s-t}\right) I_{j}^{(k-1)}+\cdots
\end{gathered}
$$

A5: The differential equation method

$$
\mathrm{d} \mathbf{I}=\epsilon(\mathrm{d} \tilde{A}) \mathbf{I}, \quad \tilde{A}_{i j}=\sum_{l} c_{i j l} \log \left(f_{l}(s)\right)
$$

Expanding in $\epsilon=(4-d) / 2$ as

$$
\begin{gathered}
I_{i}=\sum_{k=0}^{\infty} I_{i}^{(k)} \epsilon^{k} \\
\text { gives } \\
\frac{\partial I_{i}^{(k)}(s)}{\partial s}=\sum_{j} \frac{\partial \tilde{A}_{i j}}{\partial s} I_{i}^{(k-1)}(s) \\
\tilde{A}_{i j}=\log (s)-\log (s-t) \Rightarrow \\
I_{i}^{(k)}=\int \mathrm{d} s\left(\frac{1}{s}-\frac{1}{s-t}\right) I_{j}^{(k-1)}+\cdots \\
G\left(a_{1}, \ldots, a_{n} ; x\right) \equiv \int_{0}^{x} \frac{\mathrm{~d} z}{z-a_{1}} G\left(a_{2}, \ldots, a_{n} ; z\right)
\end{gathered}
$$

A6: Generalized Polylogarithms

The generalized polylogarithm (GPL)

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right) \equiv \int_{0}^{x} \frac{\mathrm{~d} y}{y-a_{1}} G\left(a_{2}, \ldots, a_{n} ; y\right) \\
& G(; x) \equiv 1, \quad G\left(0_{1}, \ldots, 0_{n} ; x\right) \equiv \frac{\log ^{n}(x)}{n!}
\end{aligned}
$$

A6: Generalized Polylogarithms

The generalized polylogarithm (GPL)

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right) \equiv \int_{0}^{x} \frac{\mathrm{~d} y}{y-a_{1}} G\left(a_{2}, \ldots, a_{n} ; y\right) \\
& G(; x) \equiv 1, \quad G\left(0_{1}, \ldots, 0_{n} ; x\right) \equiv \frac{\log ^{n}(x)}{n!}
\end{aligned}
$$

The rescaling identity:

$$
G\left(a_{1}, \ldots, a_{n} ; x\right)=G\left(z a_{1}, \ldots, z a_{n} ; z x\right) \quad \text { if } \quad z \neq 0, a_{n} \neq 0
$$

The shuffle product:

$$
\begin{gathered}
G(\bar{a} ; x) G(\bar{b} ; x)=\sum_{i} G\left(\bar{c}_{i} ; x\right) \quad c_{i} \in \bar{a} \amalg \bar{b} \\
G\left(a_{1}, a_{2} ; x\right) G(b ; x)=G\left(a_{1}, a_{2}, b ; x\right)+G\left(a_{1}, b, a_{2} ; x\right)+G\left(b, a_{1}, a_{2} ; x\right)
\end{gathered}
$$

A6: Generalized Polylogarithms

The generalized polylogarithm (GPL)

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right) \equiv \int_{0}^{x} \frac{\mathrm{~d} y}{y-a_{1}} G\left(a_{2}, \ldots, a_{n} ; y\right) \\
& G(; x) \equiv 1, \quad G\left(0_{1}, \ldots, 0_{n} ; x\right) \equiv \frac{\log ^{n}(x)}{n!}
\end{aligned}
$$

The rescaling identity:
$G\left(a_{1}, \ldots, a_{n} ; x\right)=G\left(z a_{1}, \ldots, z a_{n} ; z x\right) \quad$ if $\quad z \neq 0, a_{n} \neq 0$
The shuffle product:

$$
\begin{gathered}
G(\bar{a} ; x) G(\bar{b} ; x)=\sum_{i} G\left(\bar{c}_{i} ; x\right) \quad c_{i} \in \bar{a} \amalg \bar{b} \\
G\left(a_{1}, a_{2} ; x\right) G(b ; x)=G\left(a_{1}, a_{2}, b ; x\right)+G\left(a_{1}, b, a_{2} ; x\right)+G\left(b, a_{1}, a_{2} ; x\right)
\end{gathered}
$$

$$
G\left(\overline{0}_{m_{1}-1}, a_{1}, \ldots, \overline{0}_{m_{n}-1}, a_{n} ; x\right)=(-1)^{n} \operatorname{Li}_{m_{1}, \ldots, m_{n}}\left(\frac{x}{i_{1}}, \frac{a_{1}}{a_{2}}, \ldots, \frac{a_{n-1}}{a_{n}}\right)
$$

$$
\operatorname{Li}_{m_{1}, \ldots, m_{n}}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}>\cdots>i_{n}>0} \frac{x_{1}^{i_{1}}}{i_{1}^{m_{1}}} \cdots \frac{x_{n}^{i_{n}}}{i_{n}^{m_{n}}}
$$

A7: Symbols

There are many relations between (generalized) polylogarithms.
The 'Symbol' is a quantity that captures the algebraic parts of such relations, but ignores the analytic parts (no branch-cuts, no $i \pi$).

A7: Symbols

There are many relations between (generalized) polylogarithms.
The 'Symbol' is a quantity that captures the algebraic parts of such relations, but ignores the analytic parts (no branch-cuts, no $i \pi$).

$$
\begin{aligned}
\mathcal{S}\left(G\left(a_{1}, \ldots, a_{n} ; a_{0}\right)\right)=\sum_{i=1}^{n-1} & \left(\mathcal{S}\left(G\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n} ; a_{0}\right)\right) \otimes\left(a_{i}-a_{i-1}\right)\right. \\
& \left.-\mathcal{S}\left(G\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n} ; a_{0}\right)\right) \otimes\left(a_{i}-a_{i+1}\right)\right)
\end{aligned}
$$

A7: Symbols

There are many relations between (generalized) polylogarithms.
The 'Symbol' is a quantity that captures the algebraic parts of such relations, but ignores the analytic parts (no branch-cuts, no $i \pi$).

$$
\begin{aligned}
\mathcal{S}\left(G\left(a_{1}, \ldots, a_{n} ; a_{0}\right)\right)=\sum_{i=1}^{n-1} & \left(\mathcal{S}\left(G\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n} ; a_{0}\right)\right) \otimes\left(a_{i}-a_{i-1}\right)\right. \\
& \left.-\mathcal{S}\left(G\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n} ; a_{0}\right)\right) \otimes\left(a_{i}-a_{i+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Li}_{2}\left(\frac{1}{x}\right)=-\operatorname{Li}_{2}(x)-\frac{1}{2} \log (-x)^{2}-\frac{\pi^{2}}{6} \\
& \mathcal{S}\left(\operatorname{Li}_{2}\left(\frac{1}{x}\right)\right)=((1-x) \otimes x)-(x \otimes x) \\
& \mathcal{S}\left(\operatorname{Li}_{2}(x)\right)=-((1-x) \otimes x) \\
& \mathcal{S}\left(\log (-x)^{2}\right)=2(x \otimes x) \\
& \mathcal{S}\left(\pi^{2} / 6\right)=0
\end{aligned}
$$

A7: Symbols

The DGR (Duhr, Gangl, Rhodes) algorithm:

1) Find the symbol of your expression
2) Find a basis of function w. matching symbol
3) Invert the system
4) Find terms not captured by symbol.

A7: Symbols

The DGR (Duhr, Gangl, Rhodes) algorithm:

1) Find the symbol of your expression
2) Find a basis of function w. matching symbol
3) Invert the system
4) Find terms not captured by symbol.

The symbol can be derived directly from the canonical diff.eq:

$$
\mathrm{d} f^{(n)}=c(\mathrm{~d} \log (y)) f^{(n-1)} \Leftrightarrow \mathcal{S}\left(f^{(n)}\right)=c \mathcal{S}\left(f^{(n-1)}\right) \otimes y
$$

A basis can usually be found in terms of \log , Li_{n}, and $\mathrm{Li}_{2,2}$.
Finding arguments and inversion is where most computer time is spent.
A more sophisticated version of the symbol denoted the 'co-product' can help fix many of the remaining terms.

Interlude: Implementations of GPLs and symbols

Numeric: GiNaC package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW
Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

higgstools

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW
Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

higgstools

Interlude: Implementations of GPLs and symbols

Numeric: GiNaC package by VW, gtolrules by FTW
Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

Interlude: Implementations of GPLs and symbols

Numeric: $\quad \mathrm{GiNa}$ C package by VW, gtolrules by FTW Analytic: HyperInt by Panzer, HarmonicSums by Ablinger Symbols: Unpublished package by Duhr (and many others)

GeneralizedPolylog $([0, a, 0, a, a, a, a], a) ;$

$$
-\frac{\pi^{4} \zeta(3)}{45}-\frac{5 \pi^{2} \zeta(5)}{6}+11 \zeta(7)
$$

with(GeneralizedPolylog--PolylogTools) :
ToMPL('GeneralizedPolylog' ([a, 0, b, c], x));
$-\operatorname{MultiPolylog}\left([1,2,1],\left[\frac{x}{a}, \frac{a}{b}, \frac{b}{c}\right]\right)$
FindSymbol $\left(\ln (x) \cdot{ }^{\prime}\right.$ GeneralizedPolylog' $\left.([a, b], x)\right)$;
$\operatorname{SYM}(x,-b+x,-a+x)+\operatorname{SYM}(-b+x, x,-a+x)+\operatorname{SYM}(-b+x,-a+x, x)-\operatorname{SYM}(x, b,-a+x)-\operatorname{SYM}(b, x,-a+x)$
$-\operatorname{SYM}(b,-a+x, x)-\operatorname{SYM}(x,-b+x,-a+b)-S Y M(-b+x, x,-a+b)-S Y M(-b+x,-a+b, x)+S Y M(x, b$,
$-a+b)+S Y M(b, x,-a+b)+S Y M(b,-a+b, x)+S Y M(x,-a+x,-a+b)+S Y M(-a+x, x,-a+b)+S Y M(-a$
$+x,-a+b, x)-\operatorname{SYM}(x, a,-a+b)-\operatorname{SYM}(a, x,-a+b)-S Y M(a,-a+b, x)-S Y M(x,-a+x, b)-S Y M(-a$
$+x, x, b)-\operatorname{SYM}(-a+x, b, x)+\operatorname{SYM}(x, a, b)+\operatorname{SYM}(a, x, b)+\operatorname{SYM}(a, b, x)$

A8: Elliptic Integrals

A8: Elliptic Integrals

A cannonical form is not always possible

The "massive sunrise" requires elliptic integrals

A8: Elliptic Integrals

A cannonical form is not always possible

The "massive sunrise" requires elliptic integrals

$$
K(k) \equiv \int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} \quad E(k) \equiv \int_{0}^{1} \sqrt{\frac{1-k^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x
$$

Complete elliptic integrals of first and second kind

A8: Elliptic Integrals

A cannonical form is not always possible

The "massive sunrise" requires elliptic integrals

$$
K(k) \equiv \int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} \quad E(k) \equiv \int_{0}^{1} \sqrt{\frac{1-k^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x
$$

Complete elliptic integrals of first and second kind

Summary

Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals
$\sqrt{1 /}$
higgstools

Summary

Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals

Not discussed: Renormalization, IR-subtractions, phase space integrals,
$\sqrt[3]{1}$
higgstools

Summary

Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals

Not discussed: Renormalization, IR-subtractions, phase space integrals, unitarity cuts, Gröbner bases, local integrands, co-products,

Summary

Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals

Not discussed: Renormalization, IR-subtractions, phase space integrals, unitarity cuts, Gröbner bases, local integrands, co-products, elliptic polylogarithms, modular forms, homology theory,

Summary

Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals

Not discussed: Renormalization, IR-subtractions, phase space integrals, unitarity cuts, Gröbner bases, local integrands, co-products, elliptic polylogarithms, modular forms, homology theory, $\mathcal{N}=4$ theory, dual conformal invariace, twistor theory.

Summary

Appendix A: Two-loop Feynman integrals
A.1: Extracting the numerator
A.2: Reduction to scalar integrals
A.3: Integrand reduction
A.4: Integration-By-Parts identities
A.5: The differential equation method
A.6: Generalized polylogarithms
A.7: Symbols
A.8: Elliptic integrals

Not discussed: Renormalization, IR-subtractions, phase space integrals, unitarity cuts, Gröbner bases, local integrands, co-products, elliptic polylogarithms, modular forms, homology theory, $\mathcal{N}=4$ theory, dual conformal invariace, twistor theory.

Thank you for listening.

