Higgs Bosons in the NMSSM

Ulrich Ellwanger Université Paris-Saclay, Orsay, France with Matías R.-Vázquez

Mai 15, 2017

Ulrich Ell	

Higgs content of the NMSSM:

- Two SU(2) doublets H_u (couples to up-type quarks) and H_d (couples to down-type quarks and leptons) \rightarrow like in the MSSM,
- A singlet S whose vev generates a Dirac mass term for higgsinos (replaces the μ term of the MSSM)

Mass eigenstates (- Goldstone boson):

- Three neutral scalars:
 - $H_{SM}
 ightarrow M_{H_{SM}} \sim 125~{
 m GeV}$
 - $H_S \rightarrow$ mostly singlet-like
 - $H \rightarrow$ mostly MSSM-like, heavy, see below
- Two neutral pseudoscalars
 - $A_S \rightarrow \text{mostly singlet-like}$
 - $A \rightarrow \text{mostly MSSM-like, heavy, see below}$
- One charged Higgs $H^{\pm} \rightarrow MSSM$ -like, heavy, see below

Indirect constraints on the masses of the states beyond H_{SM} :

 H^{\pm} contributes to the $BR(b \rightarrow s + \gamma)$ which is in agreement with the SM

ightarrow $M_{H^\pm} \gtrsim$ 350 GeV > scale of EW symmetry breaking

 \rightarrow H[±], H and A form a nearly degenerate SU(2) multiplet with M \gtrsim 350 GeV

BUT: The masses M_{H_S} , M_{A_S} of the mostly singlet-like (pseudo-)scalars depend on unknown parameters and can vary from 0...1000 GeV (and are different);

 $M_{H_S} \sim 60 - 110$ GeV is natural, helps to explain $M_{H_{SM}} \sim 125$ GeV without inducing a too large $BR(H_{SM} \rightarrow H_S H_S)$ which could reduce the SM-like branching fractions like $H_{SM} \rightarrow Z^*Z$ below its measured values

Couplings of the BSM Higgs states to SM particles (essential for searches!):

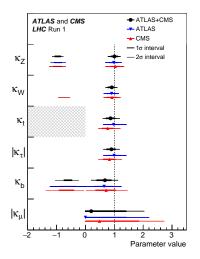
Use: $\tan \beta = \frac{\langle H_u \rangle}{\langle H_d \rangle} = 1 \dots 60;$

MSSM (typically): tan $eta\gtrsim$ 10 for $M_{H_{SM}}\sim$ 125 GeV,

NMSSM (typically): tan $\beta \sim 2-4$ for NMSSM-specific contributions to $M_{H_{SM}}$

• *H*/*A*:

- g_{Htt} suppressed by $1/\tan\beta$ (still dominant for $\tan\beta < 60$)
- $g_{Hbb}, g_{H\tau\tau}$ enhanced by tan β
- g_{HWW} , g_{HZZ} strongly suppressed for $M_H \gg M_{H_{SM}}$ ("alignment")
- H_S : Mixes with H_{SM} and/or H
 - $M_{H_S} < 125$ GeV: most couplings like H_{SM} reduced by a common factor (mixing angle) \rightarrow very similar branching fractions, except: Couplings of H_S to $\gamma\gamma$ can be considerably enhanced! (Due to a reduced coupling to $b\bar{b}$)
 - $M_{H_S} \gg 125$ GeV: most couplings like H reduced by a common factor \rightarrow very similar branching fractions

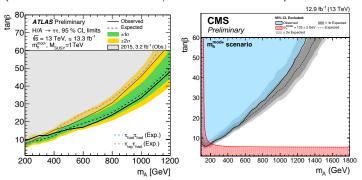

Note: Mixing between H_S and H_{SM} reduces the couplings of " H_{SM} " to ZZ, WW below their SM values (corresponding to $\kappa = 1$);

Run I ATLAS and CMS combination:

From $\kappa^2_{H_{SM}ZZ} + \kappa^2_{H_5ZZ} \lesssim 1$ and $\kappa_{H_{SM}ZZ} > 0.84$ (at 2σ):

 $\kappa_{H_SZZ} (= \kappa_{H_SWW}) \lesssim 0.5$

The (relative) $H_S - ZZ/WW$ couplings squared can be at most ~ 0.25



Possible direct production of the BSM Higgs states:

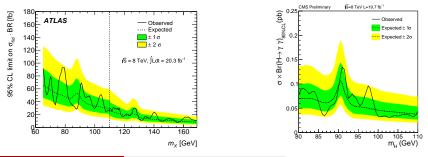
• *H*/*A*:

Ulrich E

- ggF: dominant, but large QCD background to $H \rightarrow tt$, $H \rightarrow bb$
- Ass. production with *b* quarks: enhanced for large tan β where also the BRs into *bb*, $\tau\tau$ become larger; *bb* + resonant $\tau\tau$ final state: background under control, but: no excess \rightarrow constraints in the plane tan $\beta - M_A$ ($\simeq M_H, M_{H^{\pm}}$) (from ATLAS-CONF-2016-085/CMS-PAS-HIG-16-037):

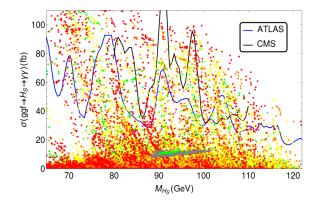

Ilwanger	NMSSM	6 /

14


• *H_S*/*A_S*:

LEP search for a light scalar with reduced coupling ξ^2 to ZZ (recall: $\xi^2 \lesssim 0.25$ from $H_{SM}ZZ$ coupling):

The region in the $\xi^2 - m_H$ plane below the black line is allowed



ATLAS/CMS searches for $ggF \rightarrow H_S \rightarrow \gamma\gamma$ at 8 TeV:

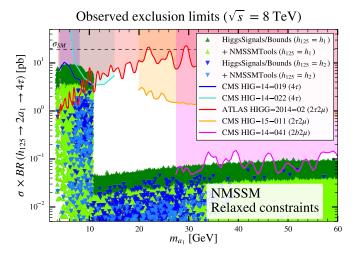
Ulrich Ellwanger

Do the ATLAS/CMS searches touch possible values for $\sigma(ggF \rightarrow H_S \rightarrow \gamma\gamma)$ within the LEP-allowed NMSSM parameter space? (M. R.-Vázquez, U.E.):

YES, but far from exclusion... even light H_S/A_S states may have too small direct production cross sections for discovery, even at 13 TeV

Possible indirect production of the BSM Higgs states:

Potentially (relatively) large NMSSM-specific trilinear Higgs couplings:


 $g_{H_{SM}H_SH_S}$, $g_{H_{SM}A_SA_S}$, $g_{HH_SH_{SM}}$

 \rightarrow allow for decays

- $H_{SM} \rightarrow H_S H_S$, $H_{SM} \rightarrow A_S A_S$ (if kinematically allowed, i.e. $M_{H_S,A_S} \lesssim 60$ GeV)
- $H \rightarrow H_{SM}H_S$

Exotic H_{SM} decays reduce its SM-like branching ratios, and are limited by its SM-like signal rates (see above); still ...

Run I searches for $H_{125} \rightarrow A_S A_S (H_S H_S) \rightarrow 4$ leptons (From R. Aggleton et al., JHEP 1702 (2017) 035, arXiv:1609.06089)

Light green/blue points: viable in the NMSSM after LEP/other LHC constraints

 \rightarrow These searches for A_S/H_S have only scratched the NMSSM parameter space ...

Ulrich Ellwanger

NMSSM

10 / 14

... and are limited to $M_{H_s,A_s} \lesssim 60$ GeV; how to search for heavier H_s/A_s ?

- \rightarrow Recall: $g_{HH_SH_{SM}}$ can be large (in contrast to $g_{HH_{SM}H_{SM}}$, $g_{HH_SH_S}$)
- → The $BR(H \rightarrow H_S H_{SM})$ can be large (~ 30%, competing only with $H \rightarrow t\bar{t}$, reducing *BR* for the search into $\tau\tau$)
- \rightarrow Looks like resonant Higgs pair production, but with one SM Higgs replaced by H_S with unknown mass in the range up to $M_H 125$ GeV
- \rightarrow Look for $b\bar{b}b\bar{b}$ (4 *b*-tagged jets) with
 - one *bb* pair: $M_{bar{b}} \sim 125$ GeV,
 - another $b\bar{b}$ pair: $M_{b\bar{b}} \sim M_{Hs}$ (unknown),
 - $M_{b\bar{b}b\bar{b}} \sim M_H$ (unknown)

 $(b\bar{b}\tau\tau$ final states are slightly less promising; $b\bar{b}\gamma\gamma$ final states possibly promising for $M_H \lesssim 500$ GeV, under study)

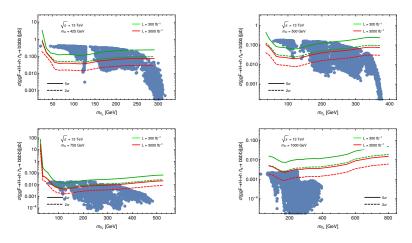
Best Strategy (M. R.-Vázquez)

(Borrowed from ATLAS/CMS searches for resonant SM Higgs pair production)

Use "test" mass $M_{b\bar{b}} \sim M_{H_S}$; for given M_{H_S} : Optimise the pairing of 4 *b*-tagged jets into 2 × 2 *b*-tagged jets, cut on *bb* masses arond 115 GeV and $M_{H_S} - 10$ GeV (allow for "losses" outside the R = 0.4 - jets)

Study the distribution of $M_{b\bar{b}b\bar{b}}$ from the 4 *b*-tagged jets (after correcting $M_{b\bar{b}}$ near 115 GeV to 125 GeV)

 \rightarrow The (by far) dominant 4b QCD background is a smoothly decreasing function of $M_{b\bar{b}b\bar{b}}$, obtained from SHERPA (during a secondment in Durham)


→ If M_{H_S} was chosen correctly, one observes a "bump" in $M_{b\bar{b}b\bar{b}}$ near M_H whose significance can be computed as function of M_{H_S} , M_H and notably the $\sigma(ggF \rightarrow H \rightarrow H_{SM} + H_S \rightarrow b\bar{b}b\bar{b})$

 \rightarrow Expected 2 σ exclusion limits and 5 σ discovery limits can be obtained

→ These are model independent (assuming just a width not larger than a few GeV), but can be compared to possible values for $\sigma(ggF \rightarrow H \rightarrow H_{SM} + H_S \rightarrow b\bar{b}b\bar{b})$ in the NMSSM:

Expected sensitivities to $\sigma(ggF \rightarrow H \rightarrow H_{SM} + H_S \rightarrow b\bar{b}b\bar{b})$ as function of M_{HS} :

Upper left: assuming $M_H = 425$ GeV, upper right: assuming $M_H = 500$ GeV Lower left: assuming $M_H = 750$ GeV, lower right: assuming $M_H = 1000$ GeV Full/dotted green: $5/2\sigma$ excess for $L = 300 fb^{-1}$ Full/dotted red: $5/2\sigma$ excess for $L = 3000 fb^{-1}$; Blue: NMSSM points

Conclusions

- The NMSSM contains a rich BSM Higgs sector which is hardly tested
- Mostly singlet-like scalars H_S /pseudoscalars A_S (light < 125 GeV, or heavy > 125 GeV) are far from being excluded; their direct production is detectable only in some regions of the NMSSM parameter space
- If lighter than 60 GeV they may be detectable via H_{SM} decays (many ongoing ATLAS/CMS studies on exotic Higgs decays)
- Otherwise they may be detectable via $H \rightarrow Z + A_S$ (ongoing ATLAS/CMS studies) or $H \rightarrow H_{SM} + H_S$ decays (see above, no LHC studies yet)

(These decays, if taken into account, reduce the sensitivities to MSSM-like H/A states in the standard $b\bar{b}\tau\tau$ channel!)