Higgs Bosons in the NMSSM

Ulrich Ellwanger
Université Paris-Saclay, Orsay, France with Matías R.-Vázquez

universitė
PARIS-SACLAY

Mai 15, 2017

Higgs content of the NMSSM:

- Two $\mathrm{SU}(2)$ doublets H_{u} (couples to up-type quarks) and H_{d} (couples to down-type quarks and leptons) \rightarrow like in the MSSM,
- A singlet S whose vev generates a Dirac mass term for higgsinos (replaces the μ term of the MSSM)

Mass eigenstates (- Goldstone boson):

- Three neutral scalars:
- $H_{S M} \rightarrow M_{H_{S M}} \sim 125 \mathrm{GeV}$
- $H_{S} \rightarrow$ mostly singlet-like
- $H \rightarrow$ mostly MSSM-like, heavy, see below
- Two neutral pseudoscalars
- $A_{S} \rightarrow$ mostly singlet-like
- $A \rightarrow$ mostly MSSM-like, heavy, see below
- One charged Higgs $H^{ \pm} \rightarrow$ MSSM-like, heavy, see below

Indirect constraints on the masses of the states beyond $H_{S M}$:
$H^{ \pm}$contributes to the $B R(b \rightarrow s+\gamma)$ which is in agreement with the SM $\rightarrow M_{H^{ \pm}} \gtrsim 350 \mathrm{GeV}>$ scale of EW symmetry breaking
$\rightarrow H^{ \pm}, H$ and A form a nearly degenerate $\mathrm{SU}(2)$ multiplet with $M \gtrsim 350 \mathrm{GeV}$
BUT: The masses $M_{H_{s}}, M_{A_{s}}$ of the mostly singlet-like (pseudo-)scalars depend on unknown parameters and can vary from $0 \ldots 1000 \mathrm{GeV}$ (and are different);
$M_{H_{S}} \sim 60-110 \mathrm{GeV}$ is natural, helps to explain $M_{H_{S M}} \sim 125 \mathrm{GeV}$ without inducing a too large $B R\left(H_{S M} \rightarrow H_{S} H_{S}\right)$ which could reduce the SM-like branching fractions like $H_{S M} \rightarrow Z^{*} Z$ below its measured values

Couplings of the BSM Higgs states to SM particles

 (essential for searches!):Use: $\tan \beta=\frac{\left\langle H_{u}\right\rangle}{\left\langle H_{d}\right\rangle}=1 \ldots 60$;
MSSM (typically): $\tan \beta \gtrsim 10$ for $M_{H_{S M}} \sim 125 \mathrm{GeV}$,
NMSSM (typically): $\tan \beta \sim 2-4$ for NMSSM-specific contributions to $M_{H_{S M}}$

- H / A :
- $g_{H t t}$ suppressed by $1 / \tan \beta$ (still dominant for $\tan \beta<60$)
- $g_{H b b}, g_{H \tau \tau}$ enhanced by $\tan \beta$
- $g_{H} w w, g_{H z z}$ strongly suppressed for $M_{H} \gg M_{H_{S M}}$ ("alignment")
- H_{S} : Mixes with $H_{S M}$ and/or H
- $M_{H_{S}}<125 \mathrm{GeV}$: most couplings like $H_{S M}$ reduced by a common factor (mixing angle) \rightarrow very similar branching fractions, except:
Couplings of H_{S} to $\gamma \gamma$ can be considerably enhanced!
(Due to a reduced coupling to $b \bar{b}$)
- $M_{H_{s}} \gg 125 \mathrm{GeV}$: most couplings like H reduced by a common factor \rightarrow very similar branching fractions

Note: Mixing between H_{S} and $H_{S M}$ reduces the couplings of " $H_{S M}$ " to $Z Z, W W$ below their SM values (corresponding to $\kappa=1$);

Run I ATLAS and CMS combination:

From $\kappa_{H_{s M} Z Z}^{2}+\kappa_{H_{s} z z}^{2} \lesssim 1$ and
$\kappa_{H_{S M} Z Z}>0.84$ (at 2σ):
$\kappa_{H_{s} Z Z}\left(=\kappa_{H_{S} W W}\right) \lesssim 0.5$
The (relative) $H_{S}-Z Z / W W$ couplings squared can be at most ~ 0.25

Possible direct production of the BSM Higgs states:

- H / A :
- $g g F$: dominant, but large QCD background to $H \rightarrow t t, H \rightarrow b b$
- Ass. production with b quarks:
enhanced for large $\tan \beta$ where also the BRs into $b b, \tau \tau$ become larger; $b b+$ resonant $\tau \tau$ final state: background under control, but: no excess \rightarrow constraints in the plane $\tan \beta-M_{A}\left(\simeq M_{H}, M_{H^{ \pm}}\right)$
(from ATLAS-CONF-2016-085/CMS-PAS-HIG-16-037):

- $H_{S} / A_{s}:$

LEP search for a light scalar with reduced coupling ξ^{2} to $Z Z$ (recall: $\xi^{2} \lesssim 0.25$ from $H_{S M} Z Z$ coupling):

The region in the $\xi^{2}-m_{H}$ plane below the black line is allowed

ATLAS/CMS searches for $g g F \rightarrow H_{S} \rightarrow \gamma \gamma$ at 8 TeV :

Do the ATLAS/CMS searches touch possible values for $\sigma\left(g g F \rightarrow H_{S} \rightarrow \gamma \gamma\right)$ within the LEP-allowed NMSSM parameter space? (M. R.-Vázquez, U.E.):

YES, but far from exclusion... even light H_{S} / A_{S} states may have too small direct production cross sections for discovery, even at 13 TeV

Possible indirect production of the BSM Higgs states:

Potentially (relatively) large NMSSM-specific trilinear Higgs couplings:

$$
g_{H_{S M}} H_{S} H_{S}, g_{H_{S M} A_{S} A_{S}}, g_{H H_{S} H_{S M}}
$$

\rightarrow allow for decays

- $H_{S M} \rightarrow H_{S} H_{S}, H_{S M} \rightarrow A_{S} A_{S}$ (if kinematically allowed, i.e. $M_{H_{s}, A_{s}} \lesssim 60 \mathrm{GeV}$)
- $H \rightarrow H_{S M} H_{S}$

Exotic $H_{S M}$ decays reduce its SM-like branching ratios, and are limited by its SM-like signal rates (see above); still ...

Run I searches for $H_{125} \rightarrow A_{S} A_{S}\left(H_{S} H_{S}\right) \rightarrow 4$ leptons
(From R. Aggleton et al., JHEP 1702 (2017) 035, arXiv:1609.06089)
Observed exclusion limits ($\sqrt{s}=8 \mathrm{TeV}$)

Light green/blue points: viable in the NMSSM after LEP/other LHC constraints
\rightarrow These searches for A_{S} / H_{S} have only scratched the NMSSM parameter space ...
... and are limited to $M_{H_{S}, A_{S}} \lesssim 60 \mathrm{GeV}$; how to search for heavier H_{S} / A_{S} ?
\rightarrow Recall: $g_{H H_{s} H_{S M}}$ can be large (in contrast to $g_{H H_{S M} H_{S M}}, g_{H H_{s} H_{s}}$)
\rightarrow The $B R\left(H \rightarrow H_{S} H_{S M}\right)$ can be large ($\sim 30 \%$, competing only with $H \rightarrow t \bar{t}$, reducing $B R$ for the search into $\tau \tau$)
\rightarrow Looks like resonant Higgs pair production, but with one SM Higgs replaced by H_{S} with unknown mass in the range up to $M_{H}-125 \mathrm{GeV}$
\rightarrow Look for $b \bar{b} b \bar{b}$ ($4 b$-tagged jets) with

- one $b \bar{b}$ pair: $M_{b \bar{b}} \sim 125 \mathrm{GeV}$,
- another $b \bar{b}$ pair: $M_{b \bar{b}} \sim M_{H_{s}}$ (unknown),
- $M_{b \bar{b} b \bar{b}} \sim M_{H}$ (unknown)
($b \bar{b} \tau \tau$ final states are slightly less promising; $b \bar{b} \gamma \gamma$ final states possibly promising for $M_{H} \lesssim 500 \mathrm{GeV}$, under study)

Best Strategy (M. R.-Vázquez)

(Borrowed from ATLAS/CMS searches for resonant SM Higgs pair production)
Use "test" mass $M_{b \bar{b}} \sim M_{H_{s}}$; for given $M_{H_{s}}$: Optimise the pairing of $4 b$-tagged jets into $2 \times 2 b$-tagged jets, cut on $b b$ masses arond 115 GeV and $M_{H_{s}}-10 \mathrm{GeV}$ (allow for "losses" outside the $R=0.4$ - jets)

Study the distribution of $M_{b \bar{b} b \bar{b}}$ from the $4 b$-tagged jets (after correcting $M_{b \bar{b}}$ near 115 GeV to 125 GeV)
\rightarrow The (by far) dominant 4b QCD background is a smoothly decreasing function of $M_{b \bar{b} b \bar{b}}$, obtained from SHERPA (during a secondment in Durham)
\rightarrow If $M_{H_{s}}$ was chosen correctly, one observes a "bump" in $M_{b \bar{b} b \bar{b}}$ near M_{H} whose significance can be computed as function of $M_{H_{s}}, M_{H}$ and notably the $\sigma\left(g g F \rightarrow H \rightarrow H_{S M}+H_{S} \rightarrow b \bar{b} b \bar{b}\right)$
\rightarrow Expected 2σ exclusion limits and 5σ discovery limits can be obtained
\rightarrow These are model independent (assuming just a width not larger than a few GeV), but can be compared to possible values for $\sigma\left(g g F \rightarrow H \rightarrow H_{S M}+H_{S} \rightarrow b \bar{b} b \bar{b}\right)$ in the NMSSM:

Expected sensitivities to $\sigma\left(g g F \rightarrow H \rightarrow H_{S M}+H_{S} \rightarrow b \bar{b} b \bar{b}\right)$ as function of $M_{H S}$:
Upper left: assuming $M_{H}=425 \mathrm{GeV}$, upper right: assuming $M_{H}=500 \mathrm{GeV}$ Lower left: assuming $M_{H}=750 \mathrm{GeV}$, lower right: assuming $M_{H}=1000 \mathrm{GeV}$ Full/dotted green: $5 / 2 \sigma$ excess for $L=300 \mathrm{fb}^{-1}$
Full/dotted red: $5 / 2 \sigma$ excess for $L=3000 \mathrm{fb}^{-1}$; Blue: NMSSM points

Conclusions

- The NMSSM contains a rich BSM Higgs sector which is hardly tested
- Mostly singlet-like scalars H_{S} /pseudoscalars A_{S} (light $<125 \mathrm{GeV}$, or heavy $>125 \mathrm{GeV}$) are far from being excluded; their direct production is detectable only in some regions of the NMSSM parameter space
- If lighter than 60 GeV they may be detectable via $H_{S M}$ decays (many ongoing ATLAS/CMS studies on exotic Higgs decays)
- Otherwise they may be detectable via $H \rightarrow Z+A_{S}$ (ongoing ATLAS/CMS studies) or $H \rightarrow H_{S M}+H_{S}$ decays (see above, no LHC studies yet)
(These decays, if taken into account, reduce the sensitivities to MSSM-like H / A states in the standard $b \bar{b} \tau \tau$ channel!)

