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Introduction

One of the main and difficult issues in high energy physics is the
calculation of involved multi-dimensional integrals.
In the following our attitude will be their analytic integration.
For quite some classes of integrals, particularly at lower order in the
coupling constant, quite a series of analytic computational methods exist.
cf. e.g. [arXiv:1509.08324] for the algorithm.

I Hypergeometric functions.

I Summation methods based on difference fields, implemented in the
Mathematica program Sigma [C. Schneider, 2005–].

I Reduction of the sums to a small number of key sums.
I Expansion of the summands in ε.
I Simplification by symbolic summation algorithms based on ΠΣ-fields

[Karr 1981 J. ACM, Schneider 2005–].
I Harmonic sums, polylogarithms and their various generalizations are

algebraically reduced using the package HarmonicSums [Ablinger

2010, 2013, Ablinger, Blümlein, Schneider 2011,2013].
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Introduction

I Mellin-Barnes representations.

I In the case of convergent massive 3-loop Feynman integrals, they
can be performed in terms of Hyperlogarithms [Generalization of a

method by F. Brown, 2008, to non-vanishing masses and local operators].

I Systems of Differential Equations.

I Almkvist-Zeilberger Theorem as Integration Method.

In the following we will concentrate on the method of Differential
Equations since these are automatically obtained from the
integration-by-parts identities representing all integrals by the so-called
master integrals.
These may either be considered directly or in terms of difference
equations obtained through a formal power-series ansatz or a Mellin
transform.
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Function Spaces

Sums Integrals Special Numbers
Harmonic Sums Harmonic Polylogarithms multiple zeta values
N∑

k=1

1

k

k∑
l=1

(−1)l

l3

∫ x

0

dy

y

∫ y

0

dz

1 + z

∫ 1

0
dx

Li3(x)

1 + x
= −2Li4(1/2) + ...

gen. Harmonic Sums gen. Harmonic Polylogarithms gen. multiple zeta values
N∑

k=1

(1/2)k

k

k∑
l=1

(−1)l

l3

∫ x

0

dy

y

∫ y

0

dz

z − 3

∫ 1

0
dx

ln(x + 2)

x − 3/2
= Li2(1/3) + ...

Cycl. Harmonic Sums Cycl. Harmonic Polylogarithms cycl. multiple zeta values
N∑

k=1

1

(2k + 1)

k∑
l=1

(−1)l

l3

∫ x

0

dy

1 + y2

∫ y

0

dz

1− z + z2
C =

∞∑
k=0

(−1)k

(2k + 1)2

Binomial Sums root-valued iterated integrals associated numbers
N∑

k=1

1

k2

(2k
k

)
(−1)k

∫ x

0

dy

y

∫ y

0

dz

z
√
1 + z

H8,w3 = 2arccot(
√
7)2

iterated integrals on CIS fct. associated numbers∫ z

0
dx

ln(x)

1 + x
2F1

[ 4
3
, 5
3

2
;
x2(x2 − 9)2

(x2 + 3)3

] ∫ 1

0
dx 2F1

[ 4
3
, 5
3

2
;
x2(x2 − 9)2

(x2 + 3)3

]
shuffle, stuffle, and various structural relations =⇒ algebras
Except the last line integrals, all other ones stem from 1st order factorizable
equations.
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H-Sums

S−1,2(n)

S-Sums

S1,2

(
1
2
, 1; n

)

C-Sums

S(2,1,−1) (n)

H-Logs

H−1,1 (x)

C-Logs

H(4,1),(0,0)(x)

G-Logs

H2,3 (x)

integral representation (inv. Mellin transform)

Mellin transform

S−1,2(∞)S1,2

(
1
2
, 1;∞

)
S(2,1,−1) (∞)

n
→

∞

H−1,1 (1)H(4,1),(0,0)(1) H2,3 (c)

x
→

1

x
→

1

x
→

c
∈
R

power series expansion

1 / 1

square-root valued letters ⇐⇒ nested binomial sums
(2i
i

)
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Decoupling of Systems

I We consider linear systems of N inhomogeneous differential
equations and decouple them into a single scalar equation + (N − 1)
other determining equations.

I Usually one may use a series ansatz (+ lnk(x) modulation)

f (x) =
∞∑
k=1

a(k)xk

and obtain
m∑

k=0

pk(N)F (N + k) = G (N)

.
I The latter equation is now tried to be solved using difference-field

techniques.
I If the equation has successive 1st order solutions one ends up with a

nested sums solution. All these cases have been algorithmized.
[arXiv:1509.08324 [hep-ph]].

I This even applies for some cases ending up elliptic in x-space
[arXiv:1310.5645 [math-ph]].
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An Example: Master integrals for the ρ-parameter @ O(α3
s )

d2

dx2
f8a(x) +

9− 30x2 + 5x4

x(x2 − 1)(9− x2)

d

dx
f8a(x)− 8(−3 + x2)

(9− x2)(x2 − 1)
f8a(x) = I8a(x)

Homogeneous solutions:

ψ
(0)
3 (x) = −

√
1− 3x

√
x + 1

2
√
2π

[
(x + 1)

(
3x2 + 1

)
E(z)− (x − 1)2(3x + 1)K(z)

]

ψ
(0)
4 (x) = −

√
1− 3x

√
x + 1

2
√
2π

[
8x2K(1− z)− (x + 1)

(
3x2 + 1

)
E(1− z)

]
,

z =
16x3

(x + 1)3(3x − 1)
.

K ,E are the complete elliptic integrals of the 1st and 2nd kind.
I8a contains rational functions of x and HPLs.
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Solutions with a Singularity
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Inhomogeneous Solution

ψ(x) = ψ
(0)
3 (x)

[
C1 −

∫
dxψ

(0)
4 (x)

N(x)

W (x)

]
+ψ

(0)
4 (x)

[
C2 −

∫
dxψ

(0)
3 (x)

N(x)

W (x)

]
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Series Solution

f8a(x) = −
√

3

[
π
3
(

35x2

108
−

35x4

486
−

35x6

4374
−

35x8

13122
−

70x10

59049
−

665x12

1062882

)
+

(
12x2 −

8x4

3

−
8x6

27
−

8x8

81
−

32x10

729
−

152x12

6561

)
Im

[
Li3




e
− iπ

6
√

3




]]
− π2

(
1 +

x4

9
−

4x6

243
−

46x8

6561

−
214x10

59049
−

5546x12

2657205

)
−
(
−

3

2
−

x4

6
+

2x6

81
+

23x8

2187
+

107x10

19683
+

2773x12

885735

)
ψ
(1)
( 1

3

)

−
√

3π

(
x2

4
−

x4

18
−

x6

162
−

x8

486
−

2x10

2187
−

19x12

39366

)
ln2(3) −

[
33x2 −

5x4

4
−

11x6

54

−
19x8

324
−

751x10

29160
−

2227x12

164025
+ π2

(
4x2

3
−

8x4

27
−

8x6

243
−

8x8

729
−

32x10

6561
−

152x12

59049

)

+

(
−2x2 +

4x4

9
+

4x6

81
+

4x8

243
+

16x10

2187
+

76x12

19683

)
ψ
(1)
( 1

3

)]
ln(x) +

135

16
+ 19x2

−
43x4

48
−

89x6

324
−

1493x8

23328
−

132503x10

5248800
−

2924131x12

236196000
−
(

x4

2
− 12x2

)
ln2(x)

−2x2 ln3(x) + O
(
x14 ln(x)

)

The solution can be easily extended to accuracies of O(10−30) using
Mathematica or Maple.
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Solutions with a Singularity
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Non-iterative Iterative Integrals

A New Class of Integrals in QFT:

Ha1,...,am−1;{am ;Fm(r(ym))},am+1,...,aq (x) =

∫ x

0
dy1fa1 (y1)

∫ y1

0
dy2...

∫ ym−1

0
dymfam (ym)

×Fm[r(ym)]Ham+1,...,aq (ym+1),

F [r(y)] =

∫ 1

0
dzg(z, r(y)), r(y) ∈ Q[y ],

In general, this spans all solutions and the story would end here.
May be, most of the practical physicists, would led it end here anyway.
This type of solution applies to many more cases beyond 2F1-solutions
(if being properly generalized).
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Elliptic Solutions and Analytic q-Series

Map:
x → q : q = exp[−πK(1− z(x))/K(z(x)], |q| < 1

I One attempts to calculate the integrals of the inhomogeneous
solution in terms of q-series analytically.

I It is expected to write it in terms of products (and integrals over)
elliptic polylogarithms [ and possibly other functions].

I Note that the corresponding results are rather deep multi-series!

I Inspiration from algebraic geometry.

Elliptic polylogarithm (as a partly suitable frame):

ELin,m(x , y , q) =
∞∑
j=1

∞∑
k=1

x j

jn
yk

km
qjk

Is it (and its generalizations) a modular form ?
=⇒ The central functions turn out to be more special ones.
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The Individual Steps: from IBPs to Closed Form q-Series

I Generate the master integrals, determine their hierarchy, and look
whether you have only 1st order factorization or also 2nd order terms

I The latter can be trivial in case; check whether they persist in Mellin
space

I If yes, analyze the 2nd order differential equation
I One usually finds a 2F1-solution with rational argument r(z), where

r(z) has additional singularities, i.e. the problem is of 2nd order, but
has more than 3 singularities.

I Triangle group relations may be used to map the 2F1 depending on
the rational parameters a,b,c to the complete elliptic integrals or not.

I In the latter case return to the formalism on slide 11 and stop.
I If yes, one may walk along the q-series avenue.
I Different Levels of Complexity:

I 1st order factorization in Mellin space:

M[K(1− z)](N) =
24N+1

(1 + 2N)2
(2N
N

)2
M[E(1− z)](N) =

24N+2

(1 + 2N)2(3 + 2N)
(2N
N

)2
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The Individual Steps: from IBPs to Closed Form q-Series

I Criteria by Herfurtner (1991), Movasati et al. (2009) are obeyed.
=⇒ 2-loop sunrise and kite diagrams, cf. Weinzierl et al. 2014-17.
Only K(r(z)) and K′(r(z)) contribute as elliptic integrals.

I Also E(r(z)) and E′(r(z)), square roots of quadratic forms etc.
contribute (present case)

I Transform now: x → q.
I The kinematic variable x :

k2 =
−x3

(1 + x)3(1− 3x)
=
ϑ4
2(q)

ϑ4
3(q)

x =
ϑ2
2(q)

3ϑ2
2(q3)

, i.e. x ∈ [1,+∞[

by a cubic transformation (Legendre-Jacobi).

x =
1

3

η2(2τ)η2(3τ)

η2(τ)η4(6τ)
, singular,∝ 1

q
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The Individual Steps: from IBPs to Closed Form q-Series

I Map to a Modular Form, which can be represented by Lambert
Series

I How to find the η-ratio ? =⇒ Many are listed as sequences in
Sloan’s OEIS.

I To find a modular form, situated in a corresponding
finite-dimensional vector space Mk one has to meet a series of
conditions and usually split off a factor 1/ηk(τ), k > 0.

I The remainder modular form is now a polynomial over Q of
Lambert-Eisenstein series

∞∑
n=0

mnqan+b

1− qan+b
.

Example:

K(z(x)) =
π

2

∞∑
k=1

qk

1 + q2k

I In this case, two q series are equal, if both are modular forms, and
agree in a series of k first terms, where k is predicted for each
congruence sub-group of Γ(N).
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The Individual Steps: from IBPs to Closed Form q-Series

I Map Lambert-Eisenstein Series into the frame of Elliptic
Polylogarithms

I Examples:

K(z) =
π

2

∞∑
k=1

qk

1 + q2k
=
π

i

∞∑
k=1

[
Li0
(
iqk
)
− Li0

(
−iqk

)]
=

π

4
E 0,0(i , 1, q),

q
ϑ′4(q)

ϑ4(q)
= −1

2
[ELi−1;0(1; 1; q) + ELi−1;0(−1; 1; q)]

+
[
ELi0;0(1; q−1; q) + ELi0;0(−1; q−1; q)

]
−
[
ELi−1;0(1; q−1; q) + ELi−1;0(−1; q−1; q)

]
.

I New type of elliptic polylogarithm, e.g.:
ELi−1;0(−1; q−1; q), y = y(q)!

I Argument synchronization necessary: −q → q, qk → q
(cyclotomic).
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Elliptic Solutions and Analytic q-Series

I Terms to be translated:
I rational functions in x
I K,E
I

√
(1− 3x)(1 + x)

I H~a(x)

Examples:

H−1(x) = ln(1 + x) = − ln(3q)− E 0;−1;2(−1;−1; q) + E 0;−1;2(ρ6;−1; q)

−E 0;−1;2(ρ3;−i ; q)− E 0;−1;2(ρ3; i ; q)

H1(x) = − H−1(x)|q→−q + 2πi , etc .; ρm = exp(2πi/m)

I (q) =
1

ηk(τ)
· P
[
ln(q),Li0(qm),ELik,l(x , y , q),ELik′,l′(x , q

−1, q)
]

∫
dq

q
I (q)

is usually not an elliptic polylogarithm, due to the η-factor, but a higher
transcendental function in q.
We are still in the unphysical region and have to map back to x ∈ [0, 1].
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Conclusions

I We have automated the chain from IBPs to 2nd order solutions
within the theory of differential equations [Before we had solved the
1st order factorizing cases for whatsoever basis of MIs.]

I General solution in the case not 1st order factorizing:
Non-iterative iterative integrals H.

I These solutions might be sufficient and are very precise numerically
and the result has a compact representation.

I In the elliptic cases we were enforced to generalize to structures not
yet appearing in the case of the sunrise/kite integrals.

I Our tools are close to those applied for number theoretic problems.
Modular forms need to become a manifest part of knowledge for
particle physicist working on fundamental QFTs [String ’theory’
needs it as well, but in a simpler way so far.]

I We can solve any η ratio.
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Conclusions

I The general solution is given in terms of polynomials of elliptic
polylogarithms, more precisely: Lambert-Eisenstein series and a few
simpler functions in q-space

I Singularity treatment ?

I How to map back to the different physical regions ?

I What are the minimal bases ?
=⇒ An important mathematical research topic.

I Interesting observation: q-series for equal mass sunrise appeared in
1987 in a similar form in Beukers’ 2nd proof of the irrationality of ζ3
in form of an Eichler-integral [Zagier].

I What comes next ? Abel integrals ? K3 surfaces (Kummer, Kähler,
Kodaira), Calabi-Yau structures...?

I Again a new and exciting territory for theoretical physics ...

19/19


