

Top-quark pole mass determination using ttbar+1Jet events at LHC

Third HiggsTools Annual Meeting and Young Editors School in Torino 15th - 20th May 2017

J. Fuster, D. Melini, R. Pittau, M. Vos IFIC-Valencia and University of Granada Third Higgs Tools Annual meeting, 15th-20th May, Torino, Italy

J. Fuster

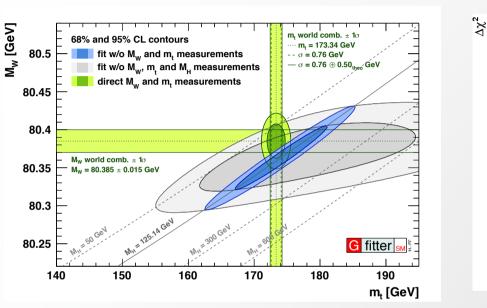
Motivation to measure the top-quark mass

• The Standard Model (SM) has a set of free parameters that need to be determined experimentally

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} (\partial^{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu}) (\partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a}) + \sum_{f} \bar{q}_{f}^{\alpha} (i\gamma^{\mu} \partial_{\mu} - \mathbf{m}_{f}) q_{f}^{\alpha}$$

$$= -\frac{g_{s}}{g_{s}} G_{a}^{\mu} \sum_{f} \bar{q}_{f}^{\alpha} \gamma_{\mu} \left(\frac{\lambda^{a}}{2}\right)_{\alpha\beta} q_{f}^{\beta} - \frac{g_{s}}{g_{s}} f^{abc} (\partial^{\mu} G_{a}^{\nu} - \partial^{\nu} G_{a}^{\mu}) G_{\mu}^{b} G_{\nu}^{c} - \frac{g_{s}^{2}}{4} f^{abc} f_{ade} G_{b}^{\mu} G_{c}^{\nu} G_{\mu}^{d} G_{\nu}^{e}$$

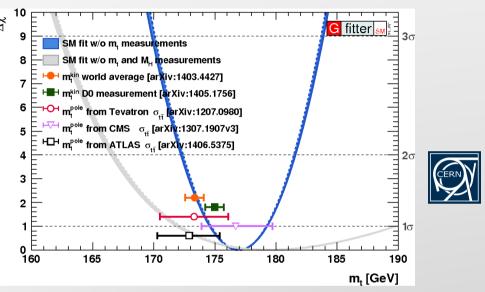
 $\alpha_s = g_s^2/4\pi$ and quark masses are not predicted by the SM


Fundamental parameter of the SM interesting per se
 Important for precise tests of the Standard Model, Yukawa coupling ~ 1
 Test of New Physics scenarios i.e. GUT scenarios, vacuum stability

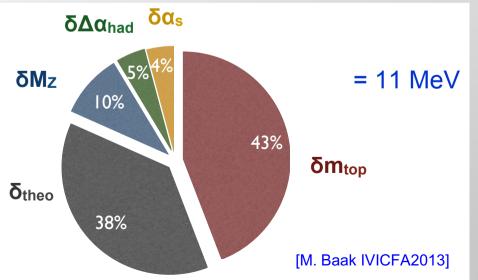
$$\mathbf{y}_{t} = \frac{\sqrt{2}}{\mathbf{v}} \mathbf{m}_{t} = \mathbf{2}^{3/4} \mathbf{G}_{F}^{1/2} \mathbf{m}_{t} = \mathbf{1} \qquad (0.995)$$

J. Fuster

1


Motivation to measure the top-quark mass

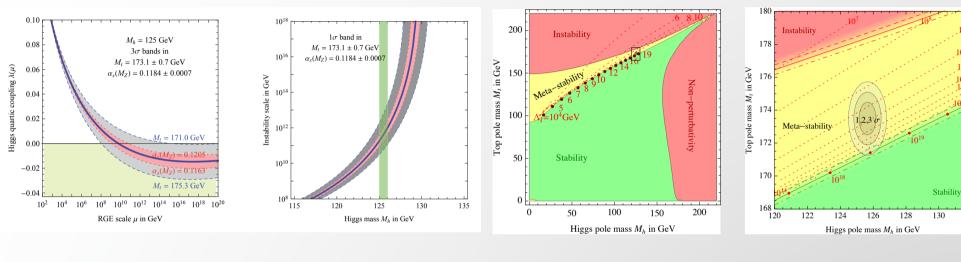
EW consistency between: M_W H M_H H M_t


Gfitter group

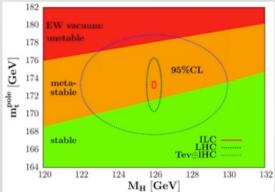
http://project-gfitter.web.cern.ch/project-gfitter/Standard_Model/

$$M_W = M_W^{LO} + \Delta r_{top} + \Delta r_H$$

- δM_W (indirect)
 - Large contributions to δM_W (and δsin²θ^I_{eff}) from top and unknown higher-order EW corrections.
- δM_W (direct) = 15 MeV

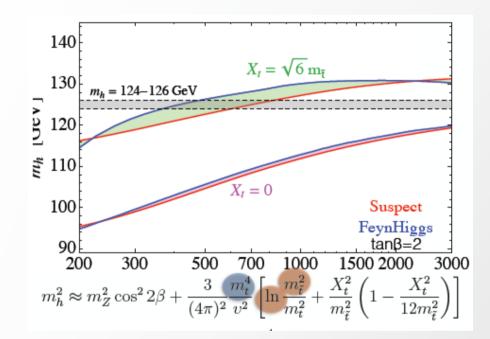


2


Motivation to measure the top-quark mass

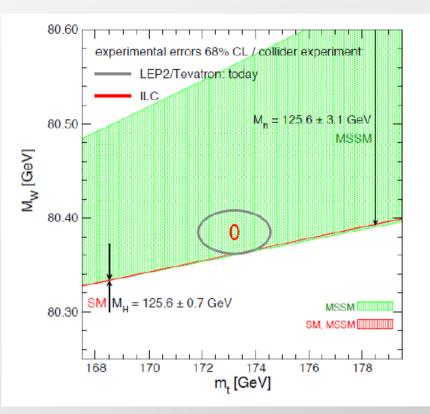
Vacuum Stability $(\lambda(\Lambda) \ge 0)$ $\lambda(\Lambda)$ the \overline{MS} quartic Higgs Coupling

Degrassi et al, **JHEP 1208 (2012) 098** Butazzo et al, **1307.3536 (2013)**


Assume SM valid up to
$$\Lambda \leq M_{planck}$$

 $M_{t}^{0} = (173.35 \pm 0.72) \text{ GeV} \longrightarrow M_{h} > (129.6 \pm 1.5) \text{ GeV}$
 $M_{t}^{0} = (125.66 \pm 0.34) \text{ GeV} \longrightarrow M_{t} < (171.36 \pm 0.46) \text{ GeV}$
Take M_{t} from ttbat X-selection (pole mass)
 $M_{t} = (173.3 \pm 2.8) \text{ GeV} \longrightarrow M_{h} > (129.4 \pm 5.6) \text{ GeV}$

Alekhin et al, Phys.Lett. B716 (2012) 214


132

Consistency checks with the SM and possible New Physics

Roberto Franceschini (IFIC seminar, Valencia 2015)

Large mass Sizeable effects

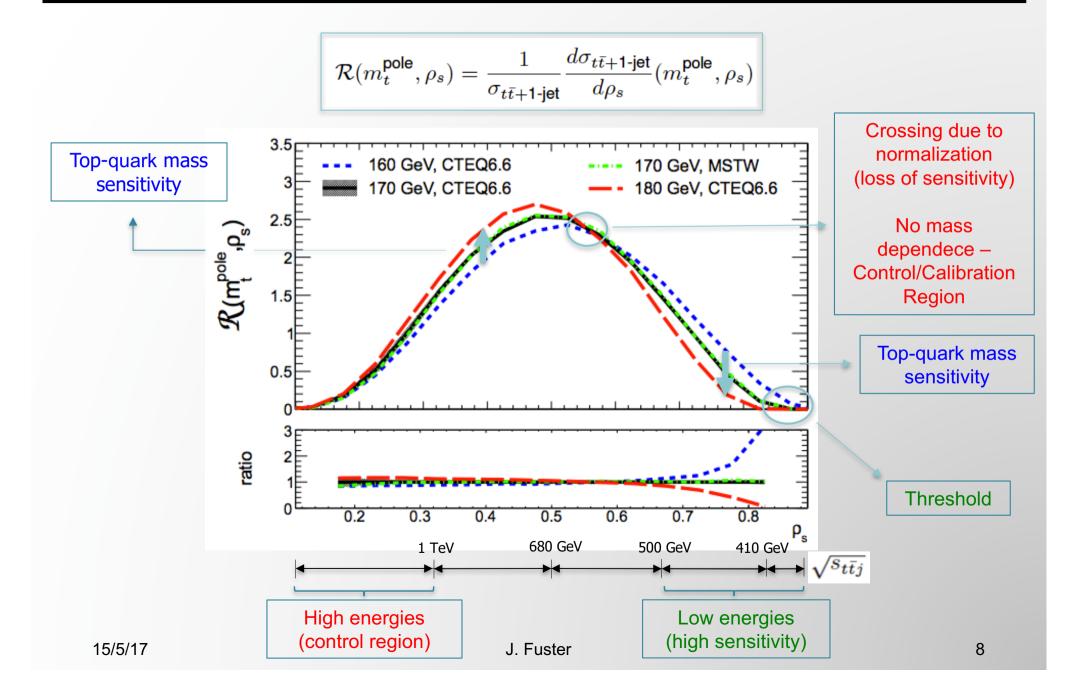
[www.ifca.unican.es/users/heinemey/uni/plots]

- Free quarks are not observed in nature as they are confined into colorless hadrons, so there is no pole in the S-matrix
 - quark-masses, in particular the top-quark mass, are not "observables" and they are parameters of the underlying theory
 - → fit $O^{exp}(x)$ with $O^{th}(M_t, \alpha_s; x)$ and extract M_t ←
 - ✓ precise value depends on the definition of the renormalization scheme selected (pole mass, MS, etc..)
 - ✓ to fix the renormalization scheme at least a NLO calculation is required

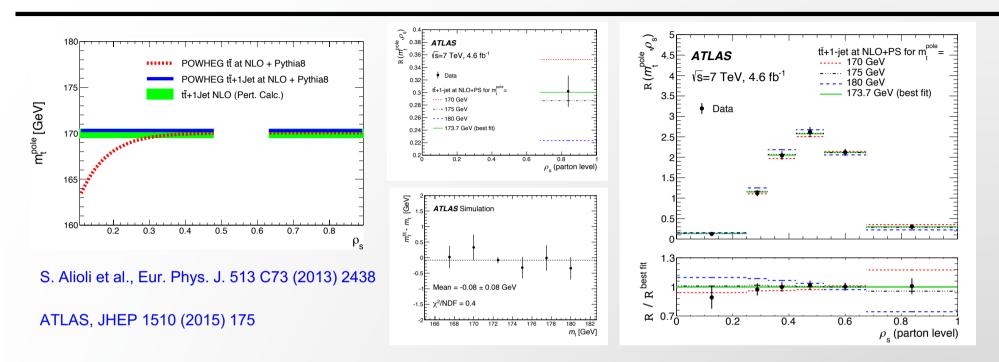
Pole mass vs running mass $m_t = \overline{m}(\mu) \left(1 + \frac{\alpha_s(\mu)}{\pi} \left[\frac{4}{3} + \ln\left(\frac{\mu^2}{\overline{m}(\mu)^2}\right) \right] + O(\alpha_s^2) \right)$

- Different mass definitions used in present determinations:
 - ✓ The MC mass (m_t^{MC}) as the parameter used in the MC generator program
 - ✓ The pole mass (m_t^{pole})
- There is no well defined prescription how to relate m_t^{MC} with m_t^{pole}
- Current "estimation" of the uncertainty/difference $\sim O(1)$ GeV
 - S. Moch et al., arXiv:1405.4781,
 - ATLAS, CDF, CMS and D0 Collaborations, arXiv:1403.4427,
 - A. H. Hoang and I. W. Stewart, 500 Nouvo Cimento B123 (2008) 1092–1100,
 - A. Buckley et al., arXiv:1101.2599
 - A. H. Hoang, arXiv:1412.3649.
 - M. Butenschoen et al., PoS(ICHEP2016)698.

tt+1-jet event topologies Jet requirement $\rightarrow P_T > 50 \text{ GeV}$. (IR-safe observable)

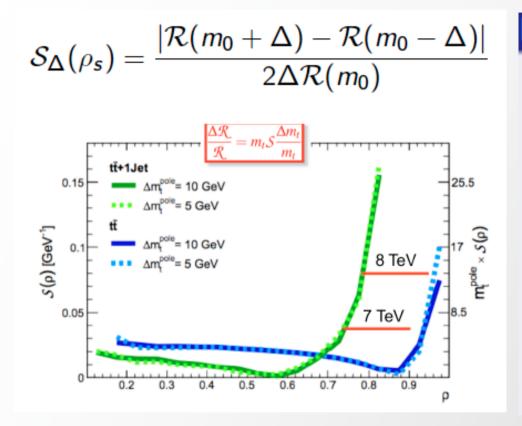

- Large event rates at the LHC (~30% at 7-8 TeV)
 NLO and NLO+shower corrections available
 Gluon emission & threshold effects depend on top-quark mass

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \frac{d\sigma_{t\bar{t}+1\text{-jet}}}{d\rho_s} (m_t^{\text{pole}}, \rho_s) \quad \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}j}}} \quad \text{and} \quad m_0 = 170 \text{ GeV}$$


Normalized 3-jet differential cross section as a function of the inverse of the system invariant mass

- Renormalization scheme is fixed through NLO calculation $\rightarrow M_t^{\text{pole}}$ defined here and \overline{MS} –the running mass scheme- can also be used
- Differential distribution enhance the top-quark mass sensitivity
- Theoretical and experimental uncertainties are minimized through normalization

Main results at 7 TeV

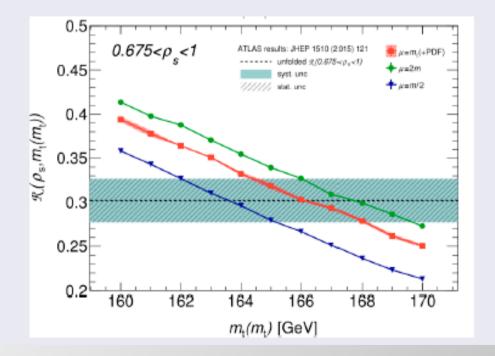


• Top-quark pole mass extracted from a fit to *R* using NLO+PS theoretical calculation:

$$m_t^{pole} = 173.7 \pm 1.5(stat.) \pm 1.4(syst.)_{-0.5}^{+1.0}(theo.) \text{ GeV}$$

- No mass dependence on the top-quark mass used in the MC simulation (≤80 MeV)
- Main uncertainties: σ (JES)=0.94 GeV, σ ($\mu_{R/F}$)=0.93 GeV; σ (ISR/FSR)=0.72 GeV

Expected gain


- \approx 4 times more stat: factor \approx 2 reduction of stat uncertainty .
- ≈ doubled sensitivity factor ≈ 2 reduction on every uncertainty (assuming uncertainty independent on binning).
- Larger event sample reduces the statistical and systematic uncertainties
- A potential reduction of 40% total uncertainty is in reach when using 8 TeV data (of course needs to be confirmed by making the real analysis).
- 8 TeV analysis will be included in Davide's PhD.

Alternative renormalisation scheme: m_t^{MS}

Recent article in collaboration with A.Irles and P.Uwer: arXiv:1704.00540 Use $m_{top}^{pole}(m_t^{\overline{\text{MS}}})$ relation to obtain $\sigma_{t\bar{t}+1 \text{ jet}}(m_t^{\overline{\text{MS}}})$ @NLO+PS $m_t^{\overline{\text{MS}}} = 165.9^{+2.4}_{-2.0}$ GeV

Method applied to 7 TeV data:

- No changes in data correction procedure.
- Just need to produce theoretical template and redo fits.
- No big changes expected in systematics
- Could be added in a later stage of approval (time issues)

 $m_{top}^{pole} = 173.7^{+2.3}_{-2.1} \text{ GeV}$

- ATLAS 8 TeV analysis. Internal note produced. Approval process ongoing.
- Running mass scheme included and results provided. Combined theoretical and experimental paper produced (ArXiv:1704.00540)
- Prospects for 13 TeV and 100 fb⁻¹